
Testing equality of two covariance operators

Daniela JARUŠKOVÁ
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We observe two independent sequences of i.i.d. zero mean
Gaussian processes X1(t), . . . ,XN1(t) and Y1(t), . . . ,YN2(t)

defined for t ∈ [0, 1] such that E ‖X1(t)‖2 = E
∫ 1
0 X 2

1 (t) dt < ∞
and E ||Y1(t)||2 = E

∫ 1
0 Y 2

1 (t) dt < ∞.

(L2[0, 1] is a Hilbert space of square integrable functions on [0, 1]

with a scalar product < f , g >=
∫ 1
0 f (t) g(t) dt and ‖ ‖ the

corresponding L2 norm.)

The covariance functions A(t, s) = E X1(t)X1(s) and
B(t, s) = E Y1(t)Y1(s) are continuous functions on [0, 1]2. A is
the corresponding covariance operator of X1 defined by the kernel
A(t, s) and B is the covariance operator of Y1 defined by the
kernel B(t, s):

(Av
)
(t) =

∫ 1

0
A(t, s) v(s) ds,

(Bv)(t) = ∫ 1

0
B(t, s) v(s) ds.



According to the Mercer lemma there exist expansions:

A(t, s) =
∞∑
i=1

λi ui (t) ui(s), B(t, s) =
∞∑
i=1

μi vi(t) vi (s),

where {λi}, {ui (t), t ∈ [0, 1]} are eigenelements of A and
{μi}, {vi (t), t ∈ [0, 1]} are eigenelements of B. Clearly

λk =

∫ 1

0

∫ 1

0
uk(t)A(t, s)uk(s) dt ds =< uk ,Auk >,

μk =

∫ 1

0

∫ 1

0
vk(t)B(t, s)vk(s) dt ds =< vk ,Bvk > .

λ1 > λ2 > · · · > λK > . . . ,

μ1 > μ2 > · · · > μK > . . . .



We estimate the covariance function A(t, s) and B(t, s) by

Â(t, s) =
1

N1

N1∑
i=1

Xi(t)Xi(s), resp. B̂(t, s) =
1

N2

N2∑
i=1

Yi(t)Yi(s).

The corresponding operators are Â and B̂:
(Âv

)
(t) =

∫ 1

0
Â(t, s) v(s) ds,

(B̂v)(t) = ∫ 1

0
B̂(t, s) v(s) ds.

We denote λ̂1 ≥ λ̂2 ≥ . . . eigenvalues and û1, û2, . . .
eigenfunctions of Â while μ̂1 ≥ μ̂2 ≥ . . . eigenvalues and v̂1, v̂2, . . .
eigenfunctions of B̂. (∫ ûkuk ≥ 0,

∫
v̂kvk ≥ 0, k = 1, . . . )

We introduce an operator Ĉ with the kernel

Ĉ (t, s) =
1

N1 + N2

( N1∑
i=1

Xi(t)Xi(s) +

N2∑
i=1

Yi (t)Yi(s)
)
.



Two-sample problem

H0 : A = B A : A �= B



We define for i = 1, . . . ,N1 and k = 1, 2, . . . :

βu
Xi
(k) =< uk ,Xi > .

They are uncorrelated and because of normality also independent.

We define for i = 1, . . . ,N1 and k = 1, 2, . . . , k ′ = k , k + 1, . . . :

ηuXi
(k , k ′) =< uk ,Xi >< uk′ ,Xi > .

It holds

E ηuXi
(k , k) = λk var ηuXi

(k , k) = 2λ2
k

E ηuXi
(k , k ′) = 0 var ηuXi

(k , k ′) = λkλk′

The variables
{
ηXi

(k , k ′), k = 1, . . . , k ′ = k , k+1, . . . , i = 1, . . .
}

are uncorrelated.



For k = 1, 2, . . . it holds

|λ̂k − λk | ≤ |||Â − A|||,
||ûk − uk || ≤ const(k)|||Â − A|||.

For N1 → ∞:

|||Â − A||| = OP(1/
√

N1),

|λ̂k − λk | = OP(1/
√

N1),

||ûk − uK || = OP(1/
√

N1).

Moreover √
N1

λ̂k − λk√
2λk

∼ N(0, 1).

|||K||| = ( ∫ 1
0

∫ 1
0 K (t, s)2 dt ds

)1/2



Panaratos et al. (2010):

K∑
k=1

K∑
k′=1

(
ĴN(k , k

′)
)2

=
K∑

k=1

(
ĴN(k , k)

)2
+ 2

K∑
k=1

k−1∑
k′=1

(
ĴN(k , k

′)
)2
,

where

ĴN(k , k
′) =

√
N1N2

2N

< φ̂k , (Â − B̂)φ̂k′ >√
< φ̂k , Ĉφ̂k >< φ̂k′ , Ĉφ̂k′ >

,

where the functions {φ̂k(t)} are eigenfunctions of the operator Ĉ.



Under H0 we can replace φ̂k by the right eigenfunctions uk .



Under H0 supposing that N1/N → α ∈ (0, 1) the variables (k �= k ′)

JN(k , k) =

√
N1N2

N

< uk , (Â − B̂)uk >√
2λ2

k

=
ηuXi

(k , k)− ηuYi
(k , k)√

2λk

√
1/N1 + 1/N2

and

JN(k , k
′) =

√
N1N2

N

< uk , (Â − B̂)uk′ >√
λk λk′

=
ηuXi

(k , k ′)− ηuYi
(k , k ′)

√
λkλk′

√
1/N1 + 1/N2

are asymptotically N(0, 1) distributed. It follows that the
suggested test statistic has asymptotically χ2 distribution with
K (K + 1)/2 degrees of freedom.



What is K?



Two-sample problem

H0 : AK = BK A : AK �= BK ,

where AK corresponds to AK (t, s) and BK corresponds to
BK (t, s):

AK (t, s) =
K∑

k=1

λk uk(t) uk(s), BK (t, s) =
K∑

k=1

μk vk(t) vk(s).



K∑
k=1

((
T̂u(k)

)2
+
(
T̂v (k)

)2)
/2,

where

T̂u(k) =

√
N1N2

2N

< ûk , (Â − B̂)ûk >

< ûk , Ĉ ûk >
=

√
N1N2

2N

λ̂k − λ̃k

< ûk , Ĉ ûk >

and

T̂v (k) =

√
N1N2

2N

< v̂k , (Â − B̂)v̂k >

< v̂k , Ĉ v̂k >
=

√
N1N2

2N

μ̃k − μ̂k

< v̂k , Ĉ v̂k >
.



K∑
k=1

((
T̂u(k)

)2
+
(
T̂v (k)

)2)
/2,

Under H0 the test has a χ2 distribution with K . degrees of
freedom.



Let AK �= BK then there exists k ≤ K such that
< uk , (A− B)uk > �= 0 or < vk , (A− B)vk > �= 0.

Assume that N1/N → α > 0 as N → ∞. Then under A the test
based on my test statistic is consistent. More specifically, it holds

(
T̂u(k)−

√
N
√

α(1− α)
< uk , (A− B)uk >√
2
(
αλk + (1− α)κk

)) = OP(1).

(
T̂v(k)−

√
N
√

α(1− α)
< vk , (A− B)vk >√
2
(
ανk + (1− α)μk

)) = OP(1).



Let the operators A and B be represented by the matrix A, resp.
B :

A =

(
10 0
0 1

)
, B =

(
10 0
0 90

)
.

The first principal component explains 90% of total variability of
A and the same is true for B . Therefore, according to the
described rule K = 1. Supposing N1 = 0.9N and N2 = 0.1N, the
covariance matrix of the pooled sample

C = 0.9A + 0.1B =

(
10 0
0 9.9

)
has the largest eigenvalue 10 and the corresponding eigenvector
(1, 0)T . As (1, 0) (A − B) (1, 0)T = 0, the procedure with K = 1
does not detect that A1 �= B1 (and A �= B) even if N is very large.



APPLICATIONS

Our original data were daily mean temperatures measured in two
stations, namely in Milan in years 1763-1998 (N1 = 236) and in
Padua in years 1766 - 1982 (N2 = 217). The data were organized
into vectors of 365 components representing annual cycles that
were smoothed by a kernel smoothing technique using an
Epanechnikov window with a bandwidth of h = 25. In this way the
analyzed data are two samples of 236 and 217 random functions.



k λ̂k λ̂k/
∑

λ̂i

∑k
i=1 λ̂i∑
λ̂i

μ̂k μ̂k/
∑

μ̂i

∑k
i=1 μ̂i∑
μ̂i

1 153.4 37% 37% 210.2 41% 41%
2 103.4 25% 62% 131.1 26% 67%
3 57.4 14% 76% 70.8 14% 81%
4 35.0 8% 84% 37.1 7% 87%
5 25.7 6% 91% 25.5 5% 93%

Table 1. The largest eigenvalues and corresponding proportions of
total variability.



K 1 2 3 4 5

test stat. 6.32 9.46 13.98 14.19 14.28

p-values 0.012 0.009 0.003 0.007 0.014

Table 2. Values of test statistic and corresponding p−values for
K = 1, . . . , 5.
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Figure 1. Estimates of the vari-
ance function for Milan (solid
line) and for Padua (dashed
line).

Figure 2. Estimates of the cor-
relation function with the lag
1 for Milan (solid line) and for
Padua (dashed line).



We observe that years with cold winters are followed by years with
warm winters. This is true for Milan as well as for Padua. In spite
of the fact that in winter the estimated correlation functions with
the lag 1 for Milan and Padua data do not differ substantially, the
correlation function with the lag 1 for Padua data attains larger
values everywhere except in winter. In the other words the Padua
temperature oscillates around its mean annual cycle more slowly
but with slightly larger amplitudes. The sample variance of Milan
annual averages is 0.36, while the sample variance of Padua annual
averages is 0.56.
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Figure 3. Eigenfunctions û1 (solid
line) and v̂1 (dashed line).

Figure 4. Eigenfunctions û2 (solid
line) and v̂2 (dashed line).
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Figure 5. Eigenfunctions û3 (solid
line) and v̂3 (dashed line).

Figure 6. Eigenfunctions û4 (solid
line) and v̂4 (dashed line).



Among all pairs {ûi , v̂i}, i = 1, 2, 3, 4 the difference between û1
and v̂1 is the most striking. Both functions attain its maximum in
the beginning of the year that corresponds to the fact that the
main source of variability comes from the large year-to-year
differences in winter temperatures. However, the eigenfunction v̂1
decreases relatively slowly and is more similar to a constant
function. That means that “weights” assigned to “daily” values in
one calendar year are more equal. It means that the values of
〈v̂1,Xi〉 and 〈v̂1,Yi〉 will attain values close to the corresponding
annual averages. This is a reason why the function v̂1 has a large
ability to detect difference in covariance structure of Milan and
Padua series (T̂ v (1) = −3.24.)


