Universal measure zero sets with full Hausdorff dimension

Ondřej Zindulka

zindulka@mat.fsv.cvut.cz
http://mat.fsv.cvut.cz/zindulka

Czech Technical University Prague
Universal measure zero (u.m.z.)

No non-trivial finite Borel measures in X vanishing on singletons.
Universal measure zero (u.m.z.)

No non-trivial finite Borel measures in X vanishing on singletons.

Hausdorff dimension

$$\dim_H X = \sup\{s : \mathcal{H}^s X > 0\}$$
U.m.z. vs. Hausdorff dimension

- Is there X u.m.z. & $\dim_H X > 0$?
U.m.z. vs. Hausdorff dimension

- Is there X u.m.z. & $\dim_H X > 0$?
- Given separable metric X, is there $E \subseteq X$ u.m.z. & $\dim_H E = \dim_H X$?
U.m.z. vs. Hausdorff dimension

- Is there X u.m.z. & $\dim_H X > 0$?
- Given separable metric X, is there $E \subseteq X$ u.m.z. & $\dim_H E = \dim_H X$?

By Perfect Set Theorem: X cannot be analytic.
Theorem. For each analytic $X \subseteq \mathbb{R}^n$ there is u.m.z. $E \subseteq X$ s.t. $\dim_H E = \dim_H X$.

Theorems
Theorems

Theorem. For each analytic $X \subseteq \mathbb{R}^n$ there is u.m.z. $E \subseteq X$ s.t. $\dim_H E = \dim_H X$.

Theorem. For each SOSC self–similar X in a complete space there is u.m.z. $E \subseteq X$ s.t. $\dim_H E = \dim X$.
Theorems

Theorem. For each analytic $X \subseteq \mathbb{R}^n$ there is u.m.z. $E \subseteq X$ s.t. $\dim H E = \dim H X$.

Theorem. For each SOSC self–similar X in a complete space there is u.m.z. $E \subseteq X$ s.t. $\dim H E = \dim X$.

Theorem. For each metric X there is u.m.z. $E \subseteq X$ s.t. $\dim H E \geq \dim X$.

Universal measure zero sets with full Hausdorff dimension – p.4/13
Basic ingredients

Theorem (Grzegorek). There is a u.m.z. set $E \subseteq \mathbb{R}$ s.t. $|E| = \text{non } \mathcal{N}$
Basic ingredients

Theorem (Grzegorek). *There is a u.m.z. set \(E \subseteq \mathbb{R} \) s.t. \(|E| = \text{non} \mathcal{N} \)

Coro. *\(X, Y \) analytic spaces, \(\mathcal{H}^s(Y) > 0 \). Then there are \(A \subseteq X, B \subseteq Y \) s.t.*

- \(|A| = |B| \)
- *\(A \) is u.m.z.*
- \(0 < \mathcal{H}^s(B) < \infty \)
Basic ingredients

Preservation:

- $u.m.z.$ is preserved by 1–1 preimages
Basic ingredients

Preservation:

- \textit{u.m.z.} is preserved by $1-1$ preimages
- \textit{u.m.z.} is preserved by $u.m.z.-1$ preimages
Basic ingredients

Preservation:

- \(u.m.z. \) is preserved by \(1–1 \) preimages
- \(u.m.z. \) is preserved by \(u.m.z.–1 \) preimages
- \(\dim_H \) is preserved by Lipschitz preimages
 \[
 \dim_H f^{-1} A \geq \dim_H A
 \]
Basic ingredients

Preservation:

• $u.m.z.$ is preserved by 1–1 preimages
• $u.m.z.$ is preserved by $u.m.z.$–1 preimages
• \dim_H is preserved by Lipschitz preimages
 $(\dim_H f^{-1} A \geq \dim_H A)$
• \dim_H is preserved by “nearly” Lipschitz preimages:

 $$(\forall \varepsilon < 1)(\exists \delta > 0)$$
 $$(d(x, y) < \delta \Rightarrow \rho(f(x), f(y)) < d(x, y)^\varepsilon)$$
Product

X, Y analytic spaces, $\mathcal{H}^s(Y) > 0$:
Product

X, Y analytic spaces, $\mathcal{H}^s(Y) > 0$:

$A = \{x_i : i \in I\} \subseteq X$ u.m.z.

$B = \{y_i : i \in I\} \subseteq Y$, $0 < \mathcal{H}^s(B) < \infty$
Product

X, Y analytic spaces, $\mathcal{H}^s(Y) > 0$:

\[A = \{ x_i : i \in I \} \subseteq X \text{ u.m.z.} \]
\[B = \{ y_i : i \in I \} \subseteq Y, \quad 0 < \mathcal{H}^s(B) < \infty \]

Diagonal set: $E = \{ (x_i, y_i) : i \in I \} \subseteq X \times Y$
Product

X, Y analytic spaces, $\mathcal{H}^s(Y) > 0$:

$A = \{x_i : i \in I\} \subseteq X$ u.m.z.

$B = \{y_i : i \in I\} \subseteq Y$, $0 < \mathcal{H}^s(B) < \infty$

Diagonal set: $E = \{(x_i, y_i) : i \in I\} \subseteq X \times Y$

Both projections are 1–1 and Lipschitz on E:

Theorem. E is u.m.z. and $\dim_H E \geq s$.
Product

X, Y analytic spaces, $\mathcal{H}^s(Y) > 0$:

$A = \{x_i : i \in I\} \subseteq X \ u.m.z.$

$B = \{y_i : i \in I\} \subseteq Y, \ 0 < \mathcal{H}^s(B) < \infty$

Diagonal set: $E = \{(x_i, y_i) : i \in I\} \subseteq X \times Y$

Both projections are 1–1 and Lipschitz on E:

Theorem. E is u.m.z. and $\dim_H E \geq s$.

Coro (Fremlin). There is u.m.z. $E \subseteq \mathbb{R}^2$, $\dim_H E \geq 1$.

Universal measure zero sets with full Hausdorff dimension – p.7/13
Cantor set

\[\mathbb{C} = 2^\mathbb{N}, \text{ metric } = \alpha^{-\min\{n : f(n) \neq g(n)\}} \]
Cantor set

\[\mathbb{C} = 2^{\mathbb{N}}, \text{ metric } = \alpha^{-\min\{n : f(n) \neq g(n)\}} \]

\[2^{\mathbb{N} \setminus D} \quad \longleftrightarrow \quad 2^{\mathbb{N}} \quad \longrightarrow \quad 2^D \]

\[f \upharpoonright \mathbb{N} \setminus D \quad \longleftrightarrow \quad f \quad \longrightarrow \quad f \upharpoonright D \]
Cantor set

\[\mathbb{C} = 2^\mathbb{N}, \text{ metric } = \alpha^{-\min\{n : f(n) \neq g(n)\}} \]

\[2^{\mathbb{N}\setminus D} \quad \longleftrightarrow \quad 2^\mathbb{N} \quad \longrightarrow \quad 2^D \]

\[f \upharpoonright \mathbb{N} \setminus D \quad \longleftrightarrow \quad f \quad \longrightarrow \quad f \upharpoonright D \]

If \(D \) is large enough, then \(2^\mathbb{N} \rightarrow 2^D \) is nearly Lipschitz
Cantor set

\[\mathbb{C} = 2^\mathbb{N}, \text{ metric } = \alpha^{-\min\{n: f(n) \neq g(n)\}} \]

\[2^\mathbb{N} \setminus D \quad \longleftrightarrow \quad 2^{\mathbb{N}} \quad \longrightarrow \quad 2^D \]

\[f \upharpoonright \mathbb{N} \setminus D \quad \longleftrightarrow \quad f \quad \longrightarrow \quad f \upharpoonright D \]

If \(D \) is large enough, then \(2^\mathbb{N} \to 2^D \) is nearly Lipschitz

Theorem. Cantor set \(\mathbb{C} \) contains a set \(E \) s.t.

- \(E \) is u.m.z.
- \(\dim_H E = \dim_H \mathbb{C} \)
Lemma. Every analytic $X \subseteq \mathbb{R}$ contains a set $C \subseteq X$ that maps nearly Lipschitz onto a Cantor set of the same Hausdorff dimension as X.
On the line

Lemma. Every analytic $X \subseteq \mathbb{R}$ contains a set $C \subseteq X$ that maps nearly Lipschitz onto a Cantor set of the same Hausdorff dimension as X.

Proof. Frostman Lemma: If $\dim_H X > s$, then there is a finite Borel measure in X s.t. $\mu_B(x, r) < r^s$.
On the line

Lemma. *Every analytic $X \subseteq \mathbb{R}$ contains a set $C \subseteq X$ that maps nearly Lipschitz onto a Cantor set of the same Hausdorff dimension as X.*

Proof. **Frostman Lemma:** If $\dim_H X > s$, then there is a finite Borel measure in X s.t. $\mu B(x, r) < r^s$.

Use Frostman Lemma to remove long enough intervals, keeping the measure large. \(\square\)
On the line

Lemma. Every analytic $X \subseteq \mathbb{R}$ contains a set $C \subseteq X$ that maps nearly Lipschitz onto a Cantor set of the same Hausdorff dimension as X.

Proof. **Frostman Lemma:** If $\dim_H X > s$, then there is a finite Borel measure in X s.t. $\mu B(x, r) < r^s$.

Use Frostman Lemma to remove long enough intervals, keeping the measure large.

Theorem. Every analytic $X \subseteq \mathbb{R}$ contains a u.m.z. set of the same Hausdorff dimension.
Lemma. Let $X \subseteq \mathbb{R}^n$ be analytic, $\dim_H X = s > n - 1$. Then there is a line L s.t.

$$\mathcal{H}^1 \{ x \in L : \dim_H \text{proj}_L^{-1}(x) \cap X \geq s - 1 \} > 0$$

Ingredients of the proof:

- Projection theorems
- Intersection theorems
Theorem. Each analytic $X \subseteq \mathbb{R}^n$ contains a u.m.z. set E s.t. $\dim_H E = \dim_H X$.

Proof by induction. Set

$$A = \{x \in L : \dim_H \text{proj}_{L^{-1}}(x) \cap X \geq s - 1\}$$

We know $\mathcal{H}^1 A > 0$. Thus by induction hypothesis:

- There is u.m.z. $B \subseteq A$, $\dim_H B = 1$.
- $x \in B \mapsto$ u.m.z. $E_x \subseteq \text{proj}_{L^{-1}}(x) \cap X$, $\dim_H E_x \geq s - 1$

Set $E = \bigcup_{x \in B} E_x$.

\[\square \]
General metric space

Lemma. Set \(n = \dim X \) (topological dimension). There are Lipschitz maps \(f_j : X \to [0, 1]^n, j \in \mathbb{N} \), such that

\[
\bigcup_{j \in \mathbb{N}} f_j X \supseteq (0, 1)^n.
\]
General metric space

Lemma. Set $n = \dim X$ (topological dimension). There are Lipschitz maps $f_j : X \to [0, 1]^n$, $j \in \mathbb{N}$, such that
\[
\bigcup_{j \in \mathbb{N}} f_j X \supseteq (0, 1)^n.
\]

Theorem. Each metric space X contains a u.m.z. set E s.t. $\dim_H E \geq \dim X$.
Preprints available

• *in situ*
• zindulka@mat.fsv.cvut.cz