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Abstract

This work is devoted to some change-point detection problems in temperature series. Re-
sults of this thesis are based on working with real data. The submitted work presents
suggestions on how the change-point methods may be applied to detect changes in annual
maximal, resp. minimal temperatures and to detect changes in occurrences of unusually
hot, resp. cold days. Solving these practical examples we came across some theoret-
ical problems, we tried to work out in this thesis. In the first problem we apply the
change-point theory and we will be looking for a change in parameters in a large class
of independent random variables with a GEV distribution not satisfying regularity con-
ditions. In the second problem we will focus on dependent variables and show how the
change-point theory might be extended from linear processes to strong-mixing sequences.
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Chapter 1

Preface

This work is devoted to some change-point detection problems in temperature series. Re-
sults of this thesis are based on working with real data.

The broadly accepted hypothesis of global warming stimulated an interest in studying
long temperature series. Some scientists assume that changes do not necessarily occur in
the mean of the series but rather in some other characteristics, e.g. appearance of some
extreme events or increase of difference between summer and winter temperatures etc.
This raises an interest in studying statistical properties of extremes of random sequences,
see e.g. Embrechts et al. [10], Leadbetter et al. [22]. Our paper presents suggestions
on how the change-point methods may be applied to detect changes in annual maximal,
resp. minimal temperatures and to detect changes in occurrences of unusually hot, resp.
cold days. Solving these practical examples we came across some theoretical problems,
we tried to work out in this thesis.

The world is filled with changes. We encounter them in economics, medicine, meteo-
rology, climatology etc. A change-point analysis is a statistical method allowing to decide
whether an observed stochastic process follows one model or whether the model changes.
In the case of a change, we might be interested in following problems: when a change was
detected and how many changes have occurred.

The change-point detection is formulated in terms of hypotheses testing. The null hy-
pothesis claims that the series is stationary, usually it means that the parameters of the
model do not change, while the alternative hypothesis claims that at an unknown time
point the model changes. The decision rule for rejecting the null hypothesis is based on
test statistics.

The earliest change-point studies go back to the 1950s, where they arose in the con-
text of quality control. We observe an output of a manufacturing process and assume
that a certain characteristic varies around a certain in-control constant a0. Sometimes,
for example due to a failure of the production device, this constant starts to vary around
another out-of-control constant a1 6= a0 and we want to know if and when such a change
occurred. Statistical procedures in change-point analysis can be divided into two cat-
egories: ”on-line” and ”off-line” procedures. The ”on-line” approach, coming from the
manufacturing process, is based on the idea that after each observation we apply a new
test and hope to be warned that the change occurred. In this thesis we will work with
the ”off-line” analysis when we already have all the observations and we apply a test for
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1. Preface 3

the whole data to decide whether and when the change occurred.

This historically first change-point problem can be formulated as follows. For simplic-
ity we assume that the starting value a0 and variance σ2 are known and the observations
are independent and distributed according to the normal distribution. Moreover we stan-
dardize the observations and obtain variables Yi, i = 1 . . . n with a zero mean and unit
variance at the beginning. Then change-point problem formulated by hypotheses testing
is:

H : Yi = ei, i = 1, . . . , n, (1.1)

A : there exists k ∈ { 0, . . . , n− 1} such that

Yi = ei, i = 1, . . . , k,

Yi = a + ei, i = k + 1, . . . , n,

where a 6= 0. Using likelihood ratio method we obtain a so-called maximum-type statistic

max
1≤k≤n−1

{∣∣∣∣∣
1√

n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
. (1.2)

However, in practice the distribution of this statistic is very complex, so that it can be
computed only for small sample sizes. Therefore, for n large, the asymptotic behavior of
the statistic (1.2) is of interest. The maximum-type statistic goes to infinity as n → ∞
a.s., however we can approximate this statistic by a maximum of a standardized Wiener
process satisfying∣∣∣∣∣ max

1≤k≤n

∑n
i=1 |Yi|√

k
− sup

1/n≤t≤1

|W (t)|√
t

∣∣∣∣∣ = op

(
1√

2 log log n

)
.

The approximate critical values can be calculated from the asymptotic behavior of the
probabilities under H:

P

(
max

0≤k≤n−1

{∣∣∣∣∣
1√

n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
>

x + bn

an

)
≈ 1− exp

{−e−x
}

, x ∈ R, (1.3)

where

an =
√

2 log log n,

bn = 2 log log n +
1

2
log log log n− 1

2
log π.

This approximation was derived by Darling and Erdös [8] in 1956.

However, it often happens that the starting value a0 is unknown. In such case we test the
following null hypothesis H against the alternative A:

H : Yi = a + ei, i = 1, . . . , n, (1.4)

A : there exists k ∈ { 0, . . . , n− 1} such that

Yi = a + ei, i = 1, . . . , k,

Yi = a + δ + ei, i = k + 1, . . . , n
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with δ 6= 0. Again for i.i.d. random variables distributed according to the normal distri-
bution N(0, σ2) with σ2 known we obtain the maximum-type statistic of a form

max
1≤k≤n−1

{
1

σ

∣∣∣∣∣
√

n

k (n− k)

k∑
i=1

(Yi − Y n)

∣∣∣∣∣

}
. (1.5)

For n large we may approximate the statistic (1.5) by the maximum of a standardized
Brownian bridges

∣∣∣∣∣ max
1≤k≤n−1

1

σ

√
n

k (n− k)

∣∣∣∣∣
k∑

i=1

(Yi − Y n)

∣∣∣∣∣− sup
1
n
≤t≤1− 1

n

|B(t)|√
t (1− t)

∣∣∣∣∣ = op

(
1√

2 log log n

)
.

Yao and Davis [28] proved similar approximation as in (1.3) for a sequence of independent
normal variables. For x ∈ R it holds

P

(
max

1≤k≤n−1

{
1

σ

∣∣∣∣∣
n√

k (n− k)

k∑
i=1

(
Yi − Y n

)
∣∣∣∣∣

}
>

x + bn

an

)
≈ 1− exp

{−2 e−x
}

.

For a quite extensive survey on change-point detection we refer to Csörgő– Horváth [7].
They used the log-likelihood ratio for the general model working with a sequence of inde-
pendent random vectors X1, X2, . . . , Xn with distribution functions F (x; θ1), . . . , F (x; θn),
respectively, where θi ∈ Θ ⊆ Rd for i = 1, . . . , n are parameters of the distribution func-
tions and are assumed to change at unknown time. The general problem tested in Csörgő–
Horváth [7] has a form:

H : ϕ1 = ϕ2 = . . . = ϕn

A : there exists k ∈ { 0, . . . , n− 1} such that

ϕ1 = . . . = ϕk 6= ϕk+1 = . . . = ϕn.

The asymptotics of a testing statistic

max
1≤k≤n

2 log(Λk)

is under null hypothesis again

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λk)

)1/2

≤ t + Dd(log n)

)
= exp(−2e−t)

for all t ∈ R, where
A(x) =

√
2 log x

and
Dd(x) = 2 log x + (d/2) log log x− log Γ(d/2),

where Γ(t) is the gamma function defined

Γ(t) =

∫ ∞

0

yt−1 exp(−y)dy.
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In Chapter 4 of Csörgő– Horváth [7] it is also shown that the limit results remain true
for a large class of dependent observations.

Many articles have been published on change-point detection, see e.g. Antoch et al. [1],
Antoch J. and Hušková M. [2], Gombay E. and Horváth, L. [11]. For application in cli-
matology we refer to publications of Jarušková [18] and Jandhyala [?].

In this thesis we will apply the change-point methods for two special cases. In the first
problem we apply the change-point theory and we will be looking for a change in pa-
rameters in a large class of independent random variables with the GEV distribution. In
the second problem we will focus on dependent variables and show how the change-point
theory might be extended from linear processes to strong-mixing sequences. The material
is divided into chapters, sections and paragraphs.

The studied data are presented in the second chapter. We summarize the origin of the
data sets and provide some statistical characteristics of the observations.

The results of the third chapter were obtained while solving change-point detection in
annual maximal and minimal temperatures. We are looking for a change in parameters in
a large class of random variables with the GEV distribution. The general Theorem 1.3.1.
presented by Csörgő– Horváth [7], confer Appendix–Theorem A.1.1, can not be applied
here directly, as extremal distributions do not satisfy conditions on regularity. Since the
density function h(x; µ, ψ, ξ) is defined on the set {x; 1 + ξ(x − µ)/ψ > 0}, the classical
regularity conditions for maximum likelihood estimators are not satisfied. The next prob-
lem is caused by the conditions C.4 and C.5 of Theorem A.1.1, since they require the
continuity of third derivatives. This can be weakened by Smith’s theorem, see Appendix–
Theorem A.3.1, and we will show that for ξ > −1

2
there exists a sequence (µ̂n, ψ̂n, ξ̂n) of

solutions of the likelihood equations such that
√

n (µ̂n − µ0, ψ̂n − ψ0, ξ̂n − ξ0) converge in
distribution to a zero mean normal vector with a variance – covariance matrix M−1 (M
is a Fisher information matrix) and hence ξ > −1

2
is still a regular case. From here an

idea comes that the assertion of Theorem A.1.1 is still valid. The results on temperature
series are presented at the end of the chapter.

Many articles have been published on independent observations. Clearly, working with
real temperature series, we can not expect that the condition of independency is fulfilled.
This problem we encountered solving the second example with occurrences of unusually
hot or cold days. While for the annual maximal and minimal temperatures from the first
example we might assume that the data form i.i.d. sequence, for occurrences of unusually
hot or cold days we have a strong correlation between the temperature values measured
at subsequent days, the value of correlation coefficient is for all series very close to 0.8. In
the fourth chapter we define the problem by a model working with data forming strong-
mixing processes. We generalize the theory for dependent data presented in Csörgő and
Horváth [7], and show that the asymptotic distribution of the testing statistic Tn(t) is
valid not only for linear processes but for strong-mixing sequences as well. In the context,
it is an important question how to estimate σ2. We can replace σ2 with an estimator,



where the rate of convergency to σ2 must be at least op((log log n)−1), which is fulfilled
by:

σ̂2 = R̂(0) + 2

ψ(n)∑
i=1

R̂(i), (1.6)

where R̂(j) = 1
n

n−j∑
i=1

(
Yi − Yn

) (
Yi+j − Yn

)
, Yn = 1

n

∑
1≤j≤n Yj and ψ(n) tends to infinity

with a certain speed. The estimator σ̂2 is a simplified version of the Bartlett log window
estimator

σ2
n(L) = R̂(0) + 2

L∑
i=1

(
1− i

L

)
R̂(i).

For more information about this estimator we refer to Antoch et al. [1].

It is wide known that the rate of convergency to distributional asymptotics under the
null hypothesis is very slow, therefore in the fifth chapter we propose a permutation
principle for obtaining the corresponding critical values. We generalize the theory pre-
sented by Kirch [20] from linear processes to strong-mixing processes. We show that the
estimator of variance

σ̂2
LK =

1

KL

L−1∑

l=0

[
K∑

k=1

(Y (Kl + k)− Y n)

]2

,

where Yn = 1
n

∑
1≤j≤n Yj, satisfies necessary condition on the rate of convergency. Critical

values obtained from our data using the permutation test are listed at the end of the
chapter.

In Appendix we summarize the known theory for extremal distributions, the theorems
concerning change-point analysis for i.i.d. data, Smith’s theorem and some results on
strong-mixing sequences and rank statistics.



Chapter 2

Data

The data sets we have studied were taken from a CD-ROM that was a part of the book
edited by Camuffo and Jones [6]. The book sums up results of EU research project IM-
PROVE. One of the main goals of the project was to produce seven highly reliable daily
series (Brussels, Cadiz, Milan, Padua, St. Petersburg, Stockholm, Uppsala), extending
over more than two centuries, by correcting errors and inhomogeneities caused by changes
in measurement style etc. We add one more data set, which attracted our attention the
most – Prague temperature series obtained from http://eca.knmi.ne. Of course, statis-
ticians enjoy analyzing such long natural series but the length of the series also brings
problems. Temperature often started to be measured at famous universities which are
now mostly situated in city centers with their ”heat island effect”. The climatologists
who analyzed the Milan and Stockholm series tried to remove this effect by comparing
the series with the measurements taken in nearby observatories, while the authors of the
other series were not able to do it. This is not the only reason why the properties of the
studied series are difficult to compare. The other reason is that the way in which the
daily averages were calculated differs from place to place.

In spite of the effort of the climatologists participating in the project, the series are
not complete. Table 1 and 2 show the periods of measurement.

period missing data number of obser.

Brussels 1795 – 1998 none 204
Cadiz 1817 – 2000 1851 – 1852; 1989 – 2000 170
Milan 1763 – 1998 none 236
Padua 1777 – 1992 1850; 1855; 1865; 1907; 1947 212
St. Petersburg 1744 – 1996 1745 – 1751; 1763 – 1766; 229

1787 – 1788; 1793; 1795 – 1797;
1800 – 1805; 1846

Stockholm 1756 – 2000 none 245
Uppsala 1725 – 2000 none 266
Prague 1775 – 2004 none 230

Table 1. Periods of observations together with missing data for annual minima.
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2. Data 8

period missing data number of obser.

Brussels 1795 – 1998 none 204
Cadiz 1817 – 2000 1852; 1873; 1964; 1988; 176

1990; 1992 – 1994
Milan 1763 – 1998 none 236
Padua 1777 – 1997 1912; 1921 –1922; 1947; 1954; 214

1994; 1996
St. Petersburg 1744 – 1996 1745 – 1753; 1784; 1787; 235

1793; 1795 – 1797; 1800 – 1804
Stockholm 1756 – 2000 none 245
Uppsala 1725 – 2000 none 266
Prague 1775 – 2004 none 230

Table 2. Periods of observations together with missing data for annual maxima.

The following tables summarize basic descriptive statistics of the data.

maxima
x σn−1 sk

Brussels 23.60 1.92 0.17
Cadiz 29.36 1.44 0.10
Milan 28.09 1.33 0.26
Padua 27.71 1.28 0.42
St. Petersburg 23.80 1.82 -0.01
Stockholm 22.39 1.94 0.11
Uppsala 22.13 1.95 0.10
Prague 26.15 1.71 0.26

Table 3. Descriptive statistics for annual maximal temperatures.

minima
x σn−1 sk

Brussels -6.80 2.39 -0.24
Cadiz 5.63 4.87 -0.89
Milan -4.43 3.09 -0.61
Padua -3.94 3.08 -0.79
St. Petersburg -23.09 2.87 -0.18
Stockholm -15.02 2.81 -0.43
Uppsala -17.81 2.53 -0.06
Prague -11.66 4.84 -0.38

Table 4. Descriptive statistics for annual minimal temperatures.

Comparing Tables 3 and 4 we can see that skewness for minimal temperatures is negative
and its absolute values are larger, while skewness for maximal temperatures is positive
with smaller absolute values. It might suggest that maximal temperatures might be
modelled by the normal distribution. For minimal temperatures, the three parameter
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Weibull distribution fits better, see Rencová [23].
The following figures show the behavior of the series under study.
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Figure 1. Annual minimal temperatures
(in ◦C) in Brussels.

Figure 2. Annual maximal temperatures
(in ◦C) in Brussels.
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Figure 3. Annual minimal temperatures
(in ◦C) in Cadiz.

Figure 4. Annual maximal temperatures
(in ◦C) in Cadiz.
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Figure 5. Annual minimal temperatures
(in ◦C) in Milan.

Figure 6. Annual maximal temperatures
(in ◦C) in Milan.
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Figure 7. Annual minimal temperatures
(in ◦C) in Padua.

Figure 8. Annual maximal temperatures
(in ◦C) in Padua.
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Figure 9. Annual minimal temperatures
(in ◦C) in St. Petersburg.

Figure 10. Annual maximal tempera-
tures (in ◦C) in St. Petersburg.
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Figure 11. Annual minimal tempera-
tures (in ◦C) in Stockholm.

Figure 12. Annual maximal tempera-
tures (in ◦C) in Stockholm.
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Figure 13. Annual minimal tempera-
tures (in ◦C) in Uppsala.

Figure 14. Annual maximal tempera-
tures (in ◦C) in Uppsala.

1800 1850 1900 1950 2000
−25

−20

−15

−10

−5

0

1800 1850 1900 1950 2000

22

24

26

28

30

32

Figure 15. Annual minimal tempera-
tures (in ◦C) in Prague.

Figure 16. Annual maximal tempera-
tures (in ◦C) in Prague.

Figures 17 – 32 describe the second problem - changes in occurrences of unusually hot,
resp. cold days. We provide graphs of sums of exceedances over a chosen level h = 2.5
and under a chosen level c = −2.5 for standardized daily series of studied data sets, see
Section 4.2.



2. Data 12

0 2 4 6 8 10

x 10
4

0

100

200

300

400

500

600

0 2 4 6 8 10

x 10
4

0

100

200

300

400

500

Figure 17. Sums of exceedances over a
chosen level h = 2.5 in Brussels.

Figure 18. Sums of exceedances under a
chosen level c = −2.5 in Brussels.
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Figure 19. Sums of exceedances over a
chosen level h = 2.5 in Cadiz.

Figure 20. Sums of exceedances under a
chosen level c = −2.5 in Cadiz.
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Figure 21. Sums of exceedances over a
chosen level h = 2.5 in Milan.

Figure 22. Sums of exceedances under a
chosen level c = −2.5 in Milan.
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Figure 23. Sums of exceedances over a
chosen level h = 2.5 in Padua.

Figure 24. Sums of exceedances under a
chosen level c = −2.5 in Padua.
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Figure 25. Sums of exceedances over a
chosen level h = 2.5 in St. Petersburg.

Figure 26. Sums of exceedances under a
chosen level c = −2.5 in St. Petersburg.
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Figure 27. Sums of exceedances over a
chosen level h = 2.5 in Stockholm.

Figure 28. Sums of exceedances under a
chosen level c = −2.5 in Stockholm.
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Figure 29. Sums of exceedances over a
chosen level h = 2.5 in Uppsala.

Figure 30. Sums of exceedances under a
chosen level c = −2.5 in Uppsala.
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Figure 31. Sums of exceedances over a
chosen level h = 2.5 in Prague.

Figure 32. Sums of exceedances under a
chosen level c = −2.5 in Prague.

Figure 33 shows that there is a strong correlation between the temperature values mea-
sured at subsequent days, its value is for all series very close to 0.8, see the upper stationary
graph in Figure 33. The following graphs, from the top to the bottom, depict correlation
coefficients between two days with lag equal to 2, 3 and 4, e.g. the first value in the upper
graph is the value of the correlation coefficient between 1st January and 2nd January,
the first value in the second graph from the top is the value of the correlation coefficient
between 1st January and 3rd January etc.
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Figure 33. The autocorrelation coefficients between
subsequent days in Milan.

We can notice that the autocorrelation coefficients for lag equal to 1 oscillate about the
value 0.8 during the whole year, while the autocorrelation coefficients for larger lags are
smaller in summer than in winter, see Figure 33.



Problem 1

Application of change-point detection

for annual maxima and minima



Chapter 3

The change-point detection for the
GEV distributions

In the first part of the thesis we study annual maximal and minimal temperatures. Fig-
ures 1 – 16 and Tables 3, 4 show behavior of the series under study.

Extremes of random sequences are modelled by the GEV distribution, for details confer
Appendix, Section A.2. Our goal is applying the general Csörgő and Horváth theory for
detecting a sudden change (Appendix, Section A.1) of the GEV distribution H(x; µ, ψ, ξ)
with a density function

h(x; µ, ψ, ξ) =
1

ψ

(
1 + ξ

x− µ

ψ

)− 1
ξ
−1

exp

{
−

(
1 + ξ

x− µ

ψ

)− 1
ξ

}
, (3.1)

provided 1 + ξ(x−µ)/ψ > 0. Notice that the support of the density function h(x; µ, ψ, ξ)
depends on the parameters µ, ψ, ξ. Suppose that X1, . . . , Xn are independent random
variables, we are to test the null hypothesis H0 against the alternative A1:

H0 : Xi ∼ GEV (µ0, ψ0, ξ0), i = 1, . . . , n, (3.2)

A1 : there exists k ∈ { 0, . . . , n− n0} such that

Xi ∼ GEV (µ0, ψ0, ξ0), i = 1, . . . , k,

Xi ∼ GEV (µ, ψ, ξ), i = k + 1, . . . , n,

where the parameters (µ0, ψ0, ξ0) before the change point are known while (µ, ψ, ξ) 6=
(µ0, ψ0, ξ0) are unknown or to test the null hypothesis H0 against the alternative A2:

A2 : there exists k ∈ {n0, . . . , n− n0} such that

Xi ∼ GEV (µ1, ψ1, ξ1), i = 1, . . . , k, (3.3)

Xi ∼ GEV (µ2, ψ2, ξ2), i = k + 1, . . . , n,

where neither the parameters before nor after the change point are known and
(
(µ1, ψ1, ξ1) 6=

(µ2, ψ2, ξ2)
)
. The constant n0 may be any fixed integer larger than three. However, to

obtain a good estimates of all three parameters we need to have enough observations.

For testing the problem (3.3) we may use the twice log–likelihood ratio

max
0≤k≤n−1

2 log(Λk) = 2 [Lk(ϕ̂k) + L∗k(ϕ
∗
k)− Ln(ϕ̂n)] ,

17
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while testing the problem (3.2) yields in a simplified version

max
0≤k≤n−1

(
2 log(Λ

(0)
k )

)
= max

0≤k≤n−1
2 [L∗k(ϕ̂

∗
k)− L∗k(ϕ0)] .

for more details we refer to Appendix, Remark A.1.2.

To find critical values we have to find distribution of the test statistics under H0. As
the exact distribution of max0≤k≤n−1 2 log(Λk), resp. max0≤k≤n−1 2 log(Λ

(0)
k ), under H0

are very complex, the approximate critical values can be found using the limit behavior
of max0≤k≤n−1 2 log(Λk), resp. max0≤k≤n−1 2 log(Λ

(0)
k ), see Appendix, Csörgő – Horváth

theorem. The conditions of Theorem A.1.1 are classical regularity conditions for the exis-
tence of the maximum likelihood estimator. Since the density function (3.1) is defined on
the set {x; 1+ξ(x−µ)/ψ > 0}, the classical regularity conditions for maximum likelihood
estimators are not satisfied. The next problem is caused by the conditions C.4 and C.5 of
Theorem A.1.1, since they require the continuity of third derivatives. This can be weak-
ened by Smith’s Theorem A.3.1 and we will show that for ξ > −1

2
there exists a sequence

(µ̂n, ψ̂n, ξ̂n) of solutions of the likelihood equations such that
√

n (µ̂n−µ0, ψ̂n−ψ0, ξ̂n−ξ0)
converge in distribution to a zero mean normal vector with a variance – covariance matrix
M−1 (M is a Fisher information matrix) and hence ξ > −1

2
is still a regular case.

We will proceed in two steps. At first we show theory for the three parameter Weibull dis-
tributions using the results of Smith’s theorem, see Appendix–Theorem A.3.1, and then
we will focus on the Fréchet distributions. For those purposes we can use the following
reparameterization of the GEV distribution.

For ξ < 0, substituting θ = µ− ψ
ξ
, β =

(
− ξ

ψ

)− 1
ξ
, α = −1

ξ
we obtain

h(x; θ, α, β) = αβ(−x + θ)α−1 exp{−β(−x + θ)α} for − x ≥ −θ,

= 0 for − x < −θ. (3.4)

It is the three parameter Weibull distribution Weib(θ, α, β) of a random variable −x (not
the Weibull distribution as a limit distribution for maxima concentrated on (−∞,−θ)
from the Fisher – Tippet theorem, see Appendix–Theorem A.2.1.)

For ξ > 0, substituting θ = µ − ψ
ξ
, β =

(
ξ
ψ

)− 1
ξ
, α = 1

ξ
, we obtain a reparameteriza-

tion

h(x; θ, α, β) = αβ(x− θ)−α−1 exp{−β(x− θ)−α} for x ≥ θ,

= 0 for x < θ, (3.5)

which corresponds to the Fréchet distribution Fréch (θ, α, β).
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Remark 3.0.1. Results for the Gumbel distribution from Fisher –Tippet theorem A.2.1
corresponding to a case ξ = 0 are obtained by ξ → 0 in (3.1).

3.1 The change-point detection for the Weibull dis-

tributions

The general theory presented in Csörgő and Horváth [7] was applied by Jandhyala et
al. [?] to develop a test for detecting a sudden change in the two parameter Weibull dis-
tribution. However, in the case we use as a model the three parameter Weibull distribution
Weib (θ, α, β) with a density function

f(x; θ, α, β) = (x− θ)α−1αβ exp{−β(x− θ)α} for x ≥ θ, (3.6)

= 0 for x < θ,

it seems more natural to look for a change in all three parameters. Notice that the
support of the density function f is given by the parameter θ. Suppose that X1, . . . , Xn

are independent random variables, we are to test the null hypothesis H0 against the
alternative A1:

H0 : Xi ∼ Weib (θ0, α0, β0), i = 1, . . . , n, (3.7)

A1 : there exists k ∈ { 0, . . . , n− n0} such that

Xi ∼ Weib (θ0, α0, β0), i = 1, . . . , k,

Xi ∼ Weib (θ, α, β), i = k + 1, . . . , n,

where the parameters (θ0, α0, β0) before the change point are known while (θ, α, β) 6=
(θ0, α0, β0) are unknown or to test the null hypothesis H0 against the alternative A2:

A2 : there exists k ∈ {n0, . . . , n− n0} such that

Xi ∼ Weib (θ1, α1, β1), i = 1, . . . , k, (3.8)

Xi ∼ Weib (θ2, α2, β2), i = k + 1, . . . , n,

where neither the parameters before nor after the change point are known and (θ1, α1, β1) 6=
(θ2, α2, β2). The constant n0 may be any fixed integer larger than three.

For testing the problem (3.8) we may use the twice log–likelihood ratio

max
0≤k≤n−1

2 log(Λk) = 2 [Lk(ϕ̂k) + L∗k(ϕ
∗
k)− Ln(ϕ̂n)] ,

while testing the problem (3.7) yields in a simplified version

max
0≤k≤n−1

(
2 log(Λ

(0)
k )

)
= max

0≤k≤n−1
2 [L∗k(ϕ̂

∗
k)− L∗k(ϕ0)] ,
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for more details we refer to Appendix. As the exact distribution of max0≤k≤n−1 2 log(Λk),

resp. max0≤k≤n−1 2 log(Λ
(0)
k ), under H0 are very complex, the approximate critical val-

ues can be found using the limit behavior of test statistics max0≤k≤n−1 2 log(Λk), resp.

max0≤k≤n−1 2 log(Λ
(0)
k ), see Appendix, Csörgő – Horváth Theorem A.1.1. Let (θ0, α0, β0)

be the true values of the parameters under H0. We will assume that θ0 ∈ R1, α0 > 2 and
β0 > 0. The assumptions C.4. and C.5. of Csörgő and Horváth are not satisfied and The-
orem A.1.1 cannot be applied directly to get a limit distribution of max0≤k≤n−1 2 log(Λk),

resp. max0≤k≤n−1 2 log(Λ
(0)
k ). On the other hand, Smith showed, confer Appendix–

Theorem A.3.1, that for α0 > 2 there exists a sequence (θ̂n, α̂n, β̂n) of solutions of the

likelihood equations such that
√

n (θ̂n − θ0, α̂n − α0, β̂n − β0) converge in distribution to
a zero mean normal vector with a variance – covariance matrix M−1 (M is a Fisher infor-
mation matrix) and hence α0 > 2 is still a regular case. From here an idea comes that
the assertion of Csörgő and Horváth theorem A.1.1 is still valid for α0 > 2.

3.2 Main results for the Weibull distributions

Our main results concern the asymptotic distribution of the statistic max0≤k≤n−1 2 log(Λ
(0)
k )

under H0 for testing a change in all three parameters, when the parameters before a change
point are known while after it they are unknown as well as the statistic max0≤k≤n−1 2 log(Λk)
under H0 for testing a change in all three parameters, when the parameters both before
and after a change point are unknown.

We start with the characteristics of the log–likelihood function Lk. The first and sec-
ond derivatives of Lk(θ, α, β) may be expressed as follows:

∂Lk

∂θ
=

k∑
i=1

[
− (α− 1)

(Xi − θ)
+ αβ(Xi − θ)α−1

]
, (3.9)

∂Lk

∂α
=

k∑
i=1

[
log(Xi − θ) +

1

α
− β(Xi − θ)α log(Xi − θ)

]
, (3.10)

∂Lk

∂β
=

k∑
i=1

[
1

β
− (Xi − θ)α

]
, (3.11)

∂2Lk

∂θ2
=

k∑
i=1

[
− (α− 1)

(Xi − θ)2
− α(α− 1)β(Xi − θ)α−2

]
, (3.12)

∂2Lk

∂θ∂α
=

k∑
i=1

[
− 1

(Xi − θ)
+ β(Xi − θ)α−1 + αβ(Xi − θ)α−1 log(Xi − θ)

]
, (3.13)
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∂2Lk

∂θ∂β
=

k∑
i=1

[
α(Xi − θ)α−1

]
, (3.14)

∂2Lk

∂α2
=

k∑
i=1

[
− 1

α2
− β(Xi − θ)α log2(Xi − θ)

]
, (3.15)

∂2Lk

∂α∂β
=

k∑
i=1

[−(Xi − θ)α log(Xi − θ)] , (3.16)

∂2Lk

∂β2
=

k∑
i=1

[
− 1

β2

]
. (3.17)

For simplicity we denote the true value of parameter

ϕ0 = (θ0, α0, β0),

a maximum likelihood estimator based on X1, . . . , Xk (when it exists) by

ϕ̂k = (θ̂k, α̂k, β̂k).

It holds

E
( ∂

∂θ

(
log f(Xi; ϕ0)

))
= 0, (3.18)

E
( ∂

∂α

(
log f(Xi; ϕ0)

))
= 0,

E
( ∂

∂β

(
log f(Xi; ϕ0)

))
= 0.

Let’s denote a Fisher information matrix M on a parameter ϕ0 = (θ0, α0, β0) with elements

M =




mθθ mθα mθβ

mαθ mαα mαβ

mβθ mβα mββ


 ,

where

mθθ = E{ ∂

∂θ
log(f(Xi; ϕ0))

∂

∂θ
log(f(Xi; ϕ0))}

= −E{ ∂2

∂θ2
log(f(Xi; ϕ0))},

mαα = E{ ∂

∂α
log(f(Xi; ϕ0))

∂

∂α
log(f(Xi; ϕ0))}

= −E{ ∂2

∂α2
log(f(Xi; ϕ0))},

mββ = E{ ∂

∂β
log(f(Xi; ϕ0))

∂

∂β
log(f(Xi; ϕ0))}

= −E{ ∂2

∂β2
log(f(Xi; ϕ0))},
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mθα = mαθ = E{ ∂

∂θ
log(f(Xi; ϕ0))

∂

∂α
log(f(Xi; ϕ0))}

= −E{ ∂2

∂θ∂α
log(f(Xi; ϕ0))},

mθβ = mβθ = E{ ∂

∂θ
log(f(Xi; ϕ0))

∂

∂β
log(f(Xi; ϕ0))}

= −E{ ∂2

∂θ∂β
log(f(Xi; ϕ0))},

mαβ = mβα = E{ ∂

∂α
log(f(Xi; ϕ0))

∂

∂β
log(f(Xi; ϕ0))}

= −E{ ∂2

∂α∂β
log(f(Xi; ϕ0))}. (3.19)

A maximum likelihood estimator ϕ̂k = (θ̂k, α̂k, β̂k) satisfies

∂Lk

∂θ
(ϕ̂k) = 0,

∂Lk

∂α
(ϕ̂k) = 0,

∂Lk

∂β
(ϕ̂k) = 0. (3.20)

The existence of ϕ̂k = (θ̂k, α̂k, β̂k) is guaranteed for α > 2 by Theorem A.3.1.

If we consider positive moments only, then

E
( ∂

∂θ

(
log f(Xi; ϕ0)

))r

< ∞ if and only if r < α

and for the same r we also have

E
( ∂

∂α

(
log f(Xi; ϕ0)

))r

< ∞,

E
( ∂

∂β

(
log f(Xi; ϕ0)

))r

< ∞.

For the second derivatives

E
( ∂2

∂θ2

(
log f(Xi; ϕ0)

))s

< ∞ if and only if 2 s < α

and for the same s is also

E
( ∂2

∂θ∂α

(
log f(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂θ∂β

(
log f(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂α2

(
log f(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂α∂β

(
log f(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂β2

(
log f(Xi; ϕ0)

))s

< ∞.
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M is a positive definite matrix. According to the Marcinkiewicz-Zygmund law, (Appendix
- Theorem A.3.2), for any τ such that 0 < τ < 1− 2/α

lim
k→∞

kτ
(1

k

∂2

∂θ2
Lk(ϕ0) + mθθ

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂θ∂α
Lk(ϕ0) + mθα

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂θ∂β
Lk(ϕ0) + mθβ

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂α2
Lk(ϕ0) + mαα

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂α∂β
Lk(ϕ0) + mαβ

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂β2
Lk(ϕ0) + mββ

)
= 0 a.s.

(3.21)

By the law of the iterated logarithm, confer Appendix–Theorem A.3.3

lim sup
k→∞

∂
∂θ

Lk(ϕ0)√
k log log k

= O(1) a.s.,

lim sup
k→∞

∂
∂α

Lk(ϕ0)√
k log log k

= O(1) a.s.,

lim sup
k→∞

∂
∂β

Lk(ϕ0)√
k log log k

= O(1) a.s.

(3.22)

We start with several technical lemmas on the three parameter Weibull distribution
Weib (θ, α, β).

Lemma 3.2.1. Let Xi ∼ Weib (θ, α, β), then
a) for θ ∈ R, β > 0 and α > 3

E
1

Xi − θ
< ∞, E

1

(Xi − θ)2
< ∞, E

1

(Xi − θ)3
< ∞

b) for θ ∈ R, β > 0 and 2 < α ≤ 3

E
1

Xi − θ
< ∞, E

1

(Xi − θ)2
< ∞,

k∑
i=1

1

(Xi − θ)3
= o

(
k3/α(log k)3(1/α+∆)

)
a.s. for some ∆ > 0. (3.23)

Proof. See Feller [12].
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Lemma 3.2.2. Let X1, X2, . . . , Xn are i.i.d. random variables, Xi ∼ Weib (θ, α, β).
Under H0 for any ∆ > 0, the minimum Xk1 and the second minimum Xk2 satisfy

1(
1− Xk1−θ

Xk2−θ

) = o
(
log k

)1+∆
a.s. (3.24)

Proof. See Jarušková [18].

Further, we prove the following lemma.

We denote for any δk > 0

Iδk
=

{
θ̂ ∈ R, α̂ ∈ R, β̂ ∈ R; |θ̂ − θ0| < δk, |α̂− α0| < δk, |β̂ − β0| < δk

}
.

Lemma 3.2.3. For any sequence {δk} satisfying δk k1/α+δ → 0 for some δ > 0 and for
any τ such that 0 < τ < 1− 2/α

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂θ2
Lk(ϕ̂)− ∂2

∂θ2
Lk(ϕ0)

∣∣∣
)

= 0 a.s., (3.25)

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂θ∂α
Lk(ϕ̂)− ∂2

∂θ∂α
Lk(ϕ0)

∣∣∣
)

= 0 a.s., (3.26)

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂θ∂β
Lk(ϕ̂)− ∂2

∂θ∂β
Lk(ϕ0)

∣∣∣
)

= 0 a.s., (3.27)

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂α2
Lk(ϕ̂)− ∂2

∂α2
Lk(ϕ0)

∣∣∣
)

= 0 a.s., (3.28)

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂α∂β
Lk(ϕ̂)− ∂2

∂α∂β
Lk(ϕ0)

∣∣∣
)

= 0 a.s., (3.29)

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂β2
Lk(ϕ̂)− ∂2

∂β2
Lk(ϕ0)

∣∣∣
)

= 0 a.s. (3.30)

Proof. The proof is divided into two parts: the first part, rather lengthy, corresponds to
the condition 2 < α ≤ 3 and the second part corresponds to the condition α > 3.

Let’s suppose 2 < α ≤ 3. We consider only terms in second derivatives, which are
discontinuous at Xi = θ.

We start with proving (3.25). Substituting (3.12) into (3.25) and concentrating on terms
discontinuous at Xi = θ we obtain a following assertion to be examined:

lim
k→∞

kτ

(
sup
Iδk

1

k

k∑
i=1

( 1

(Xi − θ̂)2
− 1

(Xi − θ0)2

))
= 0 a.s., 0 < τ < 1− 2/α. (3.31)
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The proof can be found in Jarušková [18], Lemma 3.

Next we look into the assertion (3.26). Substituting (3.13) into (3.26) we get following
assertions to be proved

lim
k→∞

kτ

(
sup
Iδk

1

k

k∑
i=1

( 1

Xi − θ̂
− 1

Xi − θ0

))
= 0 a.s. (3.32)

and

lim
k→∞

kτ

(
sup
Iδk

1

k

k∑
i=1

(
α̂β̂(Xi − θ̂)(bα−1) log(Xi − θ̂)

− α0β0(Xi − θ0)
(α0−1) log(Xi − θ0)

))
= 0 a.s. (3.33)

We start with (3.32). Similarly as in Smith [26] and Jarušková [18] we write

1

k

k∑
i=1

( 1

Xi − θ̂
− 1

Xi − θ0

)
=

1

k(Xk1 − θ̂)
− 1

k(Xk1 − θ0)

+
1

k

k∑
i=2

( 1

Xki − θ̂
− 1

Xki − θ0

)
. (3.34)

First, let X has the three parameter Weibull distribution with the density function (3.6).

Then Z = (X − θ) β1/α has the Weibull distribution with parameters θ = 0, β = 1 and
α. Random variable Y = 1

Z
has the density

f(y) = (1/y)α+1α exp{−(1/y)α} for y ≥ 0, (3.35)

= 0 for y < 0,

with a finite moment EY r < ∞ for any r < α. Then, according to Theorem A.3.4, we
get 1/

(
k1/r(Xk1 − θ0)

) → 0 a.s. for any r < α, i.e. the second term on the right side of

(3.34) satisfies 1/ (k (Xk1 − θ0)) = o(k−1+ 1
r ) a.s. for any r < α.

Second, choose r′ satisfying 1/α < 1/r′ < 1/α + δ, then we can write the first term
on the right side of (3.34) as follows:

1

Xk1 − θ̂
=

1

(Xk1 − θ0)
(
1− bθ−θ0

(Xk1−θ0)

) .

Recall that δk = o( 1
k1/α+δ ) then

sup
|bθ−θ0|<δk

|θ̂ − θ0|
(Xk1 − θ0)

= o(k1/r′/k1/α+δ) = o(1) a.s. (3.36)
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In the other words, for two first terms in (3.34)

sup
|bθ−θ0|<δk

(
1

k(Xk1 − θ̂)
− 1

k(Xk1 − θ0)

)
= o(k−1+ 1

r ) a.s. (3.37)

for any r < α.

Further, for the third term in (3.34), again as in Smith [26] and Jarušková [18], using

the Taylor expansion, there exists θ̃ that |θ̃ − θ0| < |θ̂ − θ0| and

1

k

k∑
i=2

( 1

Xki − θ̂
− 1

Xki − θ0

)
=
|θ̂ − θ0|

k

k∑
i=2

1

(Xki − θ̃)2
. (3.38)

We have to distinguish between two cases: i) θ0 − θ̂ > 0 and ii) θ0 − θ̂ < 0.

We start with i). For θ̃ satisfying θ̂ < θ̃ < θ0 we have in (3.38)

|θ̂ − θ0|
k

k∑
i=2

1

(Xki − θ̃)2
≤ |θ̂ − θ0|

k

k∑
i=2

1

(Xki − θ0)2
.

Applying Lemma 3.2.1 for the right side of the above inequality, we obtain

sup
Iδk

1

k

k∑
i=2

( 1

Xi − θ̂
− 1

Xi − θ0

)
= o(k−(1/α+δ)) O(1) = o(k−υ) a.s.

for any 0 < υ < 1
α
.

For the proof of ii) we use a characteristic of the first minimum that Xki− θ̃ ≤ Xki−Xk1

for every i = 1, . . . , n. We obtain following inequalities

|θ̂ − θ0|
k

k∑
i=2

1

(Xki − θ̃)2
≤ |θ̂ − θ0|

k

k∑
i=2

1

(Xki −Xk1)2

=
|θ̂ − θ0|

k

k∑
i=2

1(
(Xki − θ0)− (Xk1 − θ0)

)2

=
|θ̂ − θ0|

k

k∑
i=2

1

(Xki − θ0)2

(
1− (Xk1−θ0)

(Xki−θ0)

)2

≤ |θ̂ − θ0| 1(
1− Xk1−θ0

Xk2−θ0

)2

(1

k

k∑
i=2

1

(Xki − θ0)2

)
.
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Applying Lemma 3.2.1 and Lemma 3.2.2 for the factors on the right side of the above
inequality, we obtain similarly as in the case i)

sup
Iδk

1

k

k∑
i=2

( 1

Xi − θ̂
− 1

Xi − θ0

)
= o(k−(1/α+δ)) o((log k)2(1+∆)) O(1)

= o(k−υ) a.s.

for any 0 < υ < 1
α
.

Since we assume 2 < α ≤ 3, we have 1 − 2
α
≤ 1

α
implying for any 0 < τ < 1 − 2

α

the rate of convergency of the third term of (3.34)

sup
Iδk

1

k

k∑
i=2

( 1

Xi − θ̂
− 1

Xi − θ0

)
= o(k−τ ) a.s.

and with the result (3.37) we have the assertion of (3.32).

Now we prove the assertion (3.33). The Taylor expansion implies that there exists (θ̃, α̃, β̃),

such that |θ̃ − θ0| < |θ̂ − θ0|, |α̃− α0| < |α̂− α0|, |β̃ − β0| < |β̂ − β0| and

1

k

k∑
i=1

(
α̂β̂(Xi − θ̂)(bα−1) log(Xi − θ̂)

− α0β0(Xi − θ0)
(α0−1) log(Xi − θ0)

)

=
1

k

k∑
i=1

(
β̃(Xi − θ̃)(α̃−1)

(
log(Xi − θ̃)

)
(α̂− α0)

+ α̃β̃(Xi − θ̃)(α̃−1)
(
log2(Xi − θ̃)

)
(α̂− α0)

+ α̃(Xi − θ̃)(α̃−1)
(
log(Xi − θ̃)

)
(β̂ − β0)

+ α̃(α̃− 1)β̃(Xi − θ̃)(α̃−2)
(
log(Xi − θ̃)

)
(θ̂ − θ0)

+ α̃β̃(Xi − θ̃)(α̃−2)(θ̂ − θ0)

)
. (3.39)
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The first term on the right side of (3.39) can be rewritten

1

k

k∑
i=1

β̃(Xi − θ̃)(α̃−1)
(
log(Xi − θ̃)

)
(α̂− α0)

=
1

k

k∑
i=1

β̃(Xi − θ0)
(α̃−1) log

(
(Xi − θ0)(

Xi − θ̃

Xi − θ0

)
)( Xi − θ̃

Xi − θ0

)(α̃−1)

(α̂− α0)

=
1

k

k∑
i=1

(
β̃(Xi − θ0)

(α̃−1)
(
1 +

θ0 − θ̃

Xi − θ0

)α̃−1

log(Xi − θ0)

+ β̃(Xi − θ0)
(α̃−1)

(
1 +

θ0 − θ̃

Xi − θ0

)α̃−1

log
(
1 +

θ0 − θ̃

Xi − θ0

))
(α̂− α0). (3.40)

From inequality θ0−θ̃
Xi−θ0

< θ0−θ̃
Xk1−θ0

for every i = 1, 2. . . . and (3.36) we have

sup
|bθ−θ0|<δk

|θ̂ − θ0|
(Xi − θ0)

= o(1) a.s.

Then

sup
|bθ−θ0|<δk

(
1 +

|θ̂ − θ0|
(Xi − θ0)

)(α̃−1)

= O(1) a.s. (3.41)

Similarly

log
(
1 +

|θ̂ − θ0|
(Xi − θ0)

)
≤ log

(
1 +

|θ̂ − θ0|
(Xk1 − θ0)

)
≤ K

|θ̂ − θ0|
(Xk1 − θ0)

for some K ∈ R a.s. and then

sup
|bθ−θ0|<δk

log
(
1 +

|θ̂ − θ0|
(Xi − θ0)

)
= o(1) a.s. (3.42)

We can suppose that for sufficiently large k, is α̃ > 2 since we have α0 > 2 and then

E(Xi − θ0)
(α̃−1) log(Xi − θ0) < ∞, E(Xi − θ0)

(α̃−2) < ∞.

Therefore the first term in (3.39) satisfies

sup
Iδk

1

k

k∑
i=1

β̃(Xi − θ̃)(α̃−1)
(
log(Xi − θ̃)

)
(α̂− α0) = o(k−( 1

α
+δ)).
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The second term on the right side of (3.39) can be rewritten

1

k

k∑
i=1

α̃β̃(Xi − θ̃)(α̃−1)
(
log2(Xi − θ̃)

)
(α̂− α0)

=
1

k

k∑
i=1

α̃β̃(Xi − θ0)
(α̃−1)

( Xi − θ̃

Xi − θ0

)(α̃−1)
(

log2
(
(Xi − θ0)(

Xi − θ̃

Xi − θ0

)
))

(α̂− α0)

=
1

k

k∑
i=1

[
α̃β̃(Xi − θ0)

(α̃−1)
(
1 +

θ0 − θ̃

Xi − θ0

)α̃−1

log2(Xi − θ0)

+ α̃β̃(Xi − θ0)
(α̃−1)

(
1 +

θ0 − θ̃

Xi − θ0

)α̃−1

2 log(Xi − θ0) log
(
1 +

θ0 − θ̃

Xi − θ0

)

+ α̃β̃(Xi − θ0)
(α̃−1)

(
1 +

θ0 − θ̃

Xi − θ0

)α̃−1

log2
(
1 +

θ0 − θ̃

Xi − θ0

)]
(α̂− α0). (3.43)

Using inequalities (3.41), (3.42) and a property

E(Xi − θ0)
(α̃−2) log2(Xi − θ0) < ∞ for α̃ > 2

we get

sup
Iδk

1

k

k∑
i=1

α̃β̃(Xi − θ̃)(α̃−1)
(
log2(Xi − θ̃)

)
(α̂− α0) = o(k−( 1

α
+δ)).

Similarly we can rewrite the other terms on the right side of (3.39) for which, supposing
again α̃ > 2, it holds

E(Xi − θ0)
(α̃−1) log(Xi − θ0) < ∞,

E(Xi − θ0)
(α̃−2) log(Xi − θ0) < ∞,

E(Xi − θ0)
(α̃−2) < ∞,

(3.44)

therefore we have for all the terms in (3.39)

sup
Iδk

1

k

k∑
i=1

(
α̂β̂(Xi − θ̂)(bα−1) log(Xi − θ̂)− α0β0(Xi − θ0)

(α0−1) log(Xi − θ0)
)

= o(k−υ) a.s.

for any 0 < υ < 1
α
.

Since we assume 2 < α ≤ 3, we have 1 − 2
α
≤ 1

α
implying for any 0 < τ < 1 − 2

α

the rate of convergency in (3.33)

sup
Iδk

1

k

k∑
i=1

(
α̂β̂(Xi − θ̂)(bα−1) log(Xi − θ̂)− α0β0(Xi − θ0)

(α0−1) log(Xi − θ0)
)

= o(k−τ ) a.s.
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Now we investigate the assertion (3.28). Substituting (3.15) into (3.28) we have to prove

lim
k→∞

kτ

(
sup
Iδk

1

k

k∑
i=1

(
− β̂ log2(Xi − θ̂)(Xi − θ̂)bα + β0 log2(Xi − θ0)(Xi − θ0)

α0

))

= 0 a.s. (3.45)

From the Taylor expansion we get that there exists (θ̃, α̃, β̃), such that |θ̃ − θ0| < |θ̂ −
θ0|, |α̃− α0| < |α̂− α0|, |β̃ − β0| < |β̂ − β0| and

−1

k

k∑
i=1

(
β̂(Xi − θ̂)bα log2(Xi − θ̂)− β0(Xi − θ0)

α0 log2(Xi − θ0)

)

= −1

k

k∑
i=1

[
β̃(Xi − θ̃)α̃

(
log3(Xi − θ̃)

)
(α̂− α0)

+ (Xi − θ̃)α̃
(
log2(Xi − θ̃)

)
(β̂ − β0)

+ 2β̃(Xi − θ̃)(α̃−1)
(
log(Xi − θ̃)

)
(θ̂ − θ0)

+ α̃β̃(Xi − θ̃)(α̃−1)
(
log2(Xi − θ̃)

)
(θ̂ − θ0)

]
. (3.46)

Similarly as in the second term of (3.39) we have

sup
Iδk

1

k

k∑
i=1

sup
Iδk

(
− β̂(Xi − θ̂)bα log2(Xi − θ̂) + β0(Xi − θ0)

α0 log2(Xi − θ0)

)

= o(k−υ) a.s.

for any 0 < υ < 1
α
. Since for 2 < α ≤ 3 it holds 1− 2

α
≤ 1

α
and then

sup
Iδk

1

k

k∑
i=1

sup
Iδk

(
− β̂(Xi − θ̂)bα log2(Xi − θ̂) + β0(Xi − θ0)

α0 log2(Xi − θ0)

)

= o(k−τ ) a.s.

for any 0 < τ < 1− 2
α
.

That were all the terms in (3.25), (3.26), (3.27), (3.28), (3.29), (3.30) discontinuous at
Xi = θ. The proof for the condition α > 3 is trivial, as according to Lemma 3.2.1, all the
terms of Taylor expansions have finite expectations.

The next theorem gives the convergency of the proposed maximum likelihood estimators.
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Theorem 3.2.4. There exists a sequence of real number {δk}, such that

δk

√
k/ log log k →∞ and δk k(1/α)+δ → 0 for some δ > 0,

and there exists a set A with P (A) = 1, such that for any ω ∈ A we can find k0(ω), such

that for all k ≥ k0 there exists a local maximum of Lk(θ, α, β) denoted by ϕ̂
k

= (θ̂
k
, α̂

k
, β̂

k
)

satisfying

∂

∂θ
Lk((θ̂k

, α̂
k
, β̂

k
)) = 0,

∂

∂α
Lk((θ̂k

, α̂
k
, β̂

k
)) = 0,

∂

∂β
Lk((θ̂k

, α̂
k
, β̂

k
)) = 0

and

|θ̂k − θ0|
δk

≤ 1,
|α̂k − α0|

δk

≤ 1,
|β̂k − β0|

δk

≤ 1.

Proof. Similarly as in Smith [26], for any sequence {δk} satisfying assumptions of Theo-
rem 3.2.4 we define for t ∈ R, x ∈ R, y ∈ R the function

fk(t, x, y) =
1

δ2
k k

Lk(θ0 + δkt, α0 + δkx, βo + δky).

The Taylor expansion for any t ∈ R, x ∈ R, y ∈ R satisfying t2 + x2 + y2 ≤ 1 implies that
there exist |t̃θ| < 1, |x̃θ| < 1, |ỹθ| < 1 such that

∂fk

∂t
(t, x, y) =

∂fk

∂t
(0, 0, 0) +

∂2fk

∂t2
(t̃θ, x̃θ, ỹθ) t +

∂2fk

∂t∂x
(t̃θ, x̃θ, ỹθ) x+

+
∂2fk

∂t∂y
(t̃θ, x̃θ, ỹθ) y =

=
1

δk k

∂Lk

∂θ
(ϕ0) +

t

k

∂2Lk

∂θ2
(ϕ̃θ) +

x

k

∂2Lk

∂θ∂α
(ϕ̃θ) +

y

k

∂2Lk

∂θ∂β
(ϕ̃θ)

=
1

δk k

∂Lk

∂θ
(ϕ0) +

t

k

∂2Lk

∂θ2
(ϕ̃θ) +

x

k

∂2Lk

∂θ∂α
(ϕ̃θ) +

y

k

∂2Lk

∂θ∂β
(ϕ̃θ)

+
t

k

∂2Lk

∂θ2
(ϕ0) +

x

k

∂2Lk

∂θ∂α
(ϕ0) +

y

k

∂2Lk

∂θ∂β
(ϕ0)

− t

k

∂2Lk

∂θ2
(ϕ0)− x

k

∂2Lk

∂θ∂α
(ϕ0)− y

k

∂2Lk

∂θ∂β
(ϕ0)

+ tmθθ − tmθθ + xmθα − xmθα + y mθβ − y mθβ, (3.47)

where mθθ, mθα and mθβ are the elements of the Fisher information matrix M, see the
definition (3.19).

For |t̃θ| < 1, |x̃θ| < 1, |ỹθ| < 1 we denote ϕ̃θ = (θ̃θ, α̃θ, β̃θ) such as θ̃θ = θ0 + t̃θ δk,
α̃θ = α0 + x̃θ δk, β̃θ = β0 + ỹθ δk satisfying |θ̃θ − θ0| < δk, |α̃θ − α0| < δk, |β̃θ − β0| < δk
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and we denote

εk,θ(t̃θ, x̃θ, ỹθ) =
1

δk k

∂Lk

∂θ
(ϕ0) +

t

k

(
∂2Lk

∂θ2
(ϕ̃θ)− ∂2Lk

∂θ2
(ϕ0)

)

+
x

k

(
∂2Lk

∂θ∂α
(ϕ̃θ)− ∂2Lk

∂θ∂α
(ϕ0)

)

+
y

k

(
∂2Lk

∂θ∂β
(ϕ̃θ)− ∂2Lk

∂θ∂β
(ϕ0)

)

+ t

(
1

k

∂2Lk

∂θ2
(ϕ0) + mθθ

)

+ x

(
1

k

∂2Lk

∂θ∂α
(ϕ0) + mθα

)

+ y

(
1

k

∂2Lk

∂θ∂β
(ϕ0) + mθβ

)
.

We can then rewrite (3.47) in a form

∂fk

∂t
(t, x, y) = −tmθθ − xmθα − y mθβ + εk,θ(t̃θ, x̃θ, ỹθ),

For the term εk,θ(t̃θ, x̃θ, ỹθ) it holds

εk,θ(t̃θ, x̃θ, ỹθ) ≤
∣∣∣∣

1

δk k

∂Lk

∂θ
(ϕ0)

∣∣∣∣ + |t| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂θ2
(ϕ̃θ)− 1

k

∂2Lk

∂θ2
(ϕ0)

∣∣∣∣

+ |x| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂θ∂α
(ϕ̃θ)− 1

k

∂2Lk

∂θ∂α
(ϕ0)

∣∣∣∣

+ |y| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂θ∂β
(ϕ̃θ)− 1

k

∂2Lk

∂θ∂β
(ϕ0)

∣∣∣∣

+ |t|
∣∣∣∣
1

k

∂2Lk

∂θ2
(ϕ0) + mθθ

∣∣∣∣

+ |x|
∣∣∣∣
1

k

∂2Lk

∂θ∂α
(ϕ0) + mθα

∣∣∣∣

+ |y|
∣∣∣∣
1

k

∂2Lk

∂θ∂β
(ϕ0) + mθβ

∣∣∣∣ . (3.48)

From the law of the iterated logarithm (3.22) and the characteristics of the sequence δk

that
√

log log k

δk

√
k

→ 0, we get ∣∣∣∣
1

δk k

∂Lk

∂θ
(ϕ0)

∣∣∣∣ → 0.

Then, combining (3.25), (3.26), (3.27) with (3.21), we get that also all the next terms in
(3.48) tend to 0 and so we obtain

εk,θ(t̃θ, x̃θ, ỹθ) → 0 a.s.
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Similarly,

∂fk

∂x
(t, x, y) =

1

δk k

∂Lk

∂α
(ϕ0) +

t

k

∂2Lk

∂α∂θ
(ϕ̃α) +

x

k

∂2Lk

∂α2
(ϕ̃α) +

y

k

∂2Lk

∂α∂β
(ϕ̃α)

= −tmθα − xmαα − y mαβ + εk,α(t̃α, x̃α, ỹα),

where mθα, mαα and mαβ are the elements of the Fisher information matrix M, see the
definition (3.19).

For |t̃α| < 1, |x̃α| < 1, |ỹα| < 1 we denote ϕ̃α = (θ̃α, α̃α, β̃α), where θ̃α = θ0 + t̃α δk,
α̃α = α0 + x̃α δk, β̃α = β0 + ỹα δk satisfying |θ̃α − θ0| < δk, |α̃α − α0| < δk, |β̃α − β0| < δk.
For εk,α(t̃α, x̃α, ỹα) we obtain following inequalities.

εk,α(t̃α, x̃α, ỹα) ≤
∣∣∣∣

1

δk k

∂Lk

∂α
(ϕ0)

∣∣∣∣ + |t| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂θ∂α
(ϕ̃α)− 1

k

∂2Lk

∂θ∂α
(ϕ0)

∣∣∣∣

+ |x| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂α2
(ϕ̃α)− 1

k

∂2Lk

∂α2
(ϕ0)

∣∣∣∣

+ |y| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂α∂β
(ϕ̃α)− 1

k

∂2Lk

∂α∂β
(ϕ0)

∣∣∣∣

+ |t|
∣∣∣∣
1

k

∂2Lk

∂θ∂α
(ϕ0) + mθα

∣∣∣∣

+ |x|
∣∣∣∣
1

k

∂2Lk

∂α2
(ϕ0) + mαα

∣∣∣∣

+ |y|
∣∣∣∣
1

k

∂2Lk

∂α∂β
(ϕ0) + mαβ

∣∣∣∣ . (3.49)

From the law of the iterated logarithm (3.22) and the characteristics of the sequence δk

that
√

log log k

δk

√
k

→ 0, we get ∣∣∣∣
1

δk k

∂Lk

∂α
(ϕ0)

∣∣∣∣ → 0.

Then, combining (3.28), (3.26), (3.29) with (3.21), we get that also all the next terms in
(3.49) tend to 0 and so we obtain

εk,α(t̃α, x̃α, ỹα) → 0 a.s.

Further,

∂fk

∂y
(t, x, y) =

1

δk k

∂Lk

∂β
(ϕ0) +

t

k

∂2Lk

∂β∂θ
(ϕ̃β) +

x

k

∂2Lk

∂α∂β
(ϕ̃β) +

y

k

∂2Lk

∂β2
(ϕ̃β)

= −tmθβ − x mαβ − y mββ + εk,β(t̃β, x̃β, ỹβ),
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where mθβ, mαβ and mββ are the elements of the Fisher information matrix M, see the
definition (3.19).

For |t̃β| < 1, |x̃β| < 1, |ỹβ| < 1 we denote ϕ̃β = (θ̃β, α̃β, β̃β), where θ̃β = θ0 + t̃β δk,
α̃β = α0 + x̃β δk, β̃β = β0 + ỹβ δk satisfying |θ̃β − θ0| < δk, |α̃β − α0| < δk, |β̃β − β0| < δk.

For εk,β(t̃β, x̃β, ỹβ) we have following inequalities

εk,β(t̃β, x̃β, ỹβ) ≤
∣∣∣∣

1

δk k

∂Lk

∂β
(ϕ0)

∣∣∣∣ + |t| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂β∂θ
(ϕ̃β)− 1

k

∂2Lk

∂β∂θ
(ϕ0)

∣∣∣∣

+ |x| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂α∂β
(ϕ̃β)− 1

k

∂2Lk

∂α∂β
(ϕ0)

∣∣∣∣

+ |y| sup
Iδk

∣∣∣∣
1

k

∂2Lk

∂β2
(ϕ̃β)− 1

k

∂2Lk

∂β2
(ϕ0)

∣∣∣∣

+ |t|
∣∣∣∣
1

k

∂2Lk

∂θ∂β
(ϕ0) + mθβ

∣∣∣∣

+ |x|
∣∣∣∣
1

k

∂2Lk

∂α∂β
(ϕ0) + mαβ

∣∣∣∣

+ |y|
∣∣∣∣
1

k

∂2Lk

∂β2
(ϕ0) + mββ

∣∣∣∣ . (3.50)

From the law of the iterated logarithm (3.22) and the characteristics of the sequence δk

that
√

log log k

δk

√
k

→ 0, we get ∣∣∣∣
1

δk k

∂Lk

∂β
(ϕ0)

∣∣∣∣ → 0.

Then, combining (3.27), (3.29), (3.30) with (3.21), we get that also all the next terms in
(3.50) tend to 0 and so we obtain

εk,β(t̃β, x̃β, ỹβ) → 0 a.s.

Let t2 + x2 + y2 = 1. Then we have

t
∂fk

∂t
+ x

∂fk

∂x
+ y

∂fk

∂y
= −t2 mθθ − x2 mαα − y2 mββ

− 2 (x t mθα + y t mθβ + x y mαβ)

+ t εk,θ(t̃θ, x̃θ, ỹθ) + x εk,α(t̃α, x̃α, ỹα) + y εk,β(t̃β, x̃β, ỹβ) (3.51)

Since we proved that εk,θ(t̃θ, x̃θ, ỹθ) → 0 a.s., εk,α(t̃α, x̃α, ỹα) → 0 a.s., εk,β(t̃β, x̃β, ỹβ) →
0 a.s., the expression (3.51) is as k → ∞ strictly negative by the assumed positive-
definiteness of M. Hence Lemma A.3.5 shows that fk has a local maximum in the range
t2 + x2 + y2 < 1 as k →∞.
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Clearly, there exists a sequence {θ̂k, α̂k, β̂k} and a set A with P (A) = 1 such that for

any ω ∈ A there exists k0(ω) such that for all k ≥ k0, θ̂k, α̂k, β̂k is a local maximum of
Lk(θ, α, β) satisfying

∂

∂θ
Lk(θ̂k

, α̂
k
, β̂

k
) = 0,

∂

∂α
Lk(θ̂k

, α̂
k
, β̂

k
) = 0,

∂

∂β
Lk(θ̂k

, α̂
k
, β̂

k
) = 0

and

|θ̂k − θ0|
δk

≤ 1,
|α̂k − α0|

δk

≤ 1,
|β̂k − β0|

δk

≤ 1.

The next lemma shows that, in the limit, the proposed maximum likelihood estimators
behave as if they were partial sums of random vectors.

Lemma 3.2.5. For any τ such that 0 < τ < 1− 2/α and for k →∞ it holds

lim
k→∞

kτ 1√
k log log k

(( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)
− k M

( θ̂k − θ0

α̂k − α0

β̂k − β0

))
= 0 a.s. (3.52)

Proof. Now, for instance we choose the sequence δ̃k = log log log k
√

log log k/k} satisfying

conditions from Lemma 3.2.3. For maximum likelihood estimators ϕ̂k = (θ̂
k
, α̂

k
, β̂

k
) we

have

0 =
∂

∂θ
Lk(ϕ̂k) =

=
∂

∂θ
Lk(ϕ0)− k(θ̂k − θ0)mθθ

− k(α̂k − α0)mθα − k(β̂k − β0)mθβ

+
( ∂2

∂θ2
Lk(ϕ̃k)− ∂2

∂θ2
Lk(ϕ0)

)
(θ̂k − θ0)

+
( ∂2

∂θ2
Lk(ϕ̃k)− ∂2

∂θ∂α
Lk(ϕ0)

)
(α̂k − α0)

+
( ∂2

∂θ∂β
Lk(ϕ̃k)− ∂2

∂θ∂β
Lk(ϕ0)

)
(β̂k − β0)

+
( ∂2

∂θ2
Lk(ϕ0) + k mθθ

)
(θ̂k − θ0)

+
( ∂2

∂θ∂α
Lk(ϕ0) + k mθα

)
(α̂k − α0)

+
( ∂2

∂θ∂β
Lk(ϕ0) + k mθβ

)
(β̂k − β0) (3.53)
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for ϕ̃θ = (θ̃θ, α̃θ, β̃θ) satisfying |θ̃k−θ0| < |θ̂k−θ0|, |α̃k−α0| < |α̂k−α0|, |β̃k−β0| < |β̂k−β0|.
Then

1√
k log log k

( ∂

∂θ
Lk(ϕ0)− k(θ̂k − θ0)mθθ − k(α̂k − α0)mθα − k(β̂k − β0)mθβ

)

= −
√

k√
log log k

1

k

( ∂2

∂θ2
Lk(ϕ̃k)− ∂2

∂θ2
Lk(ϕ0)

)
(θ̂k − θ0)

−
√

k√
log log k

1

k

( ∂2

∂θ2
Lk(ϕ̃k)− ∂2

∂θ∂α
Lk(ϕ0)

)
(α̂k − α0)

−
√

k√
log log k

1

k

( ∂2

∂θ∂β
Lk(ϕ̃k)− ∂2

∂θ∂β
Lk(ϕ0)

)
(β̂k − β0)

−
√

k√
log log k

1

k

( ∂2

∂θ2
Lk(ϕ0) + k mθθ

)
(θ̂k − θ0)

−
√

k√
log log k

1

k

( ∂2

∂θ∂α
Lk(ϕ0) + k mθα

)
(α̂k − α0)

−
√

k√
log log k

1

k

( ∂2

∂θ∂β
Lk(ϕ0) + k mθβ

)
(β̂k − β0). (3.54)

Using the Marcinkiewicz-Zygmund law (3.21), characteristics (3.25), (3.26), (3.27) and

the characteristics of the sequence {δ̃k} that

|θ̂k − θ0| ≤ (log log log k)

√
log log k

k
,

|α̂k − α0| ≤ (log log log k)

√
log log k

k
,

|β̂k − β0| ≤ (log log log k)

√
log log k

k
(3.55)

for the right side of (3.54) we get

lim
k→∞

kτ 1√
k log log k

(
∂

∂θ
Lk(ϕ0)− k mθθ(θ̂k − θ0)− k mθα(α̂k − α0)− k mθβ(β̂k − β0)

)

= 0 a.s. (3.56)

for any τ satisfying 0 < τ < 1−2/α, where the coefficients mθθ, mθα, mθβ are the elements
of the first line of the matrix M. From the similar expressions for derivatives ∂

∂α
Lk(ϕ̂k)

and ∂
∂β

Lk(ϕ̂k) we obtain

lim
k→∞

kτ 1√
k log log k

(
∂

∂α
Lk(ϕ0)− kmαθ(θ̂k − θ0)− kmαα(α̂k − α0)− kmαβ(β̂k − β0)

)

= 0 a.s. (3.57)
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lim
k→∞

kτ 1√
k log log k

(
∂

∂β
Lk(ϕ0)− kmβθ(θ̂k − θ0)− kmβα(α̂k − α0)− kmββ(β̂k − β0)

)

= 0 a.s., (3.58)

where coefficients mαθ, mαα, mαβ are the elements of the second line of the matrix M
and where coefficients mβθ, mβα, mββ are the elements of the third line of the matrix M.
From (3.56), (3.57), (3.58) we get the assertion (3.52).

The next corollary gives the rate of convergency of the proposed maximum likelihood
estimators.

Corollary 3.2.6. The sequence of the proposed maximum likelihood estimators ϕ̂k =
(θ̂

k
, α̂

k
, β̂

k
) from Theorem 3.2.4 satisfies

lim sup
k→∞

√
k√

log log k
|α̂k − α0| = O(1) a.s.,

lim sup
k→∞

√
k√

log log k
|β̂k − β0| = O(1) a.s.,

lim sup
k→∞

√
k√

log log k
|θ̂k − θ0| = O(1) a.s.

(3.59)

Proof. The proof is an easy consequence of (3.52) and the law of iterated logarithm
(3.22).

Corollary 3.2.7. For any τ such that 0 < τ < 1− 2/α it holds

lim
k→∞

kτ

(
1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)

−k
(
θ̂k − θ0, α̂k − α0, β̂k − β0

)
M

( θ̂k − θ0

α̂k − α0

β̂k − β0

))
= 0 a.s. (3.60)

Proof. For a matrix P, such that PTP = M, we can write equation (3.52) as follows:

lim
k→∞

kτ 1√
log log k

(
1√
k
(PT )−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)
−
√

kP

( θ̂k − θ0

α̂k − α0

β̂k − β0

))
= 0 a.s. (3.61)

For k →∞ we have

1√
k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
P−1 +

√
k

(
θ̂k − θ0, α̂k − α0, β̂k − β0

)
PT

= O(
√

log log k) a.s. (3.62)

and combining equations (3.61) and (3.62) we obtain the assertion of Corollary 3.2.7.
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Theorem 3.2.8. For any τ such that 0 < τ < 1− 2/α and for k →∞

kτ

(
2 (Lk(ϕ̂k)− Lk(ϕ0))

− 1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

))
→ 0 a.s.

Proof. The Taylor expansion

2 (Lk(ϕ̂k)− Lk(ϕ0)) = 2D(cϕk−ϕ0)Lk(ϕ̂k) + D2
(cϕk−ϕ0)Lk(ϕ̃), (3.63)

where D(cϕk−ϕ0)Lk(ϕ̂k) is the first differential at the point (ϕ̂k) in the direction (ϕ̂k−ϕ0),
D2

(cϕk−ϕ0)Lk(ϕ̃) is the second differential at the point (ϕ̃) in the direction (ϕ̂k − ϕ0) and

|θ̃ − θ0| < |θ̂k − θ0|, |α̃− α0| < |α̂k − α0|, |β̃ − β0| < |β̂k − β0|.

We can rewrite (3.63)

2 (Lk(ϕ̂k)− Lk(ϕ0))− 1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)

= D2
(cϕk−ϕ0)Lk(ϕ̃)−D2

(cϕk−ϕ0)Lk(ϕ0) + D2
(cϕk−ϕ0)Lk(ϕ0))

− k
(
θ̂k − θ0, α̂k − α0, β̂k − β0

)
M

( θ̂k − θ0

α̂k − α0

β̂k − β0

)

+ k
(
θ̂k − θ0, α̂k − α0, β̂k − β0

)
M

( θ̂k − θ0

α̂k − α0

β̂k − β0

)

− 1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)
.

(3.64)

For the differences on the right side of (3.64) we obtain:
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- The difference of second differentials is

D2
(cϕk−ϕ0)Lk(ϕ̃)−D2

(cϕk−ϕ0)Lk(ϕ0)

=

(
∂2

∂θ2
Lk(ϕ̃)− ∂2

∂θ2
Lk(ϕ0)

)
(θ̂k − θ0)

2

+

(
∂2

∂α2
Lk(ϕ̃)− ∂2

∂α2
Lk(ϕ0)

)
(α̂k − α0)

2

+

(
∂2

∂β2
Lk(ϕ̃)− ∂2

∂β2
Lk(ϕ0)

)
(β̂k − β0)

2

+ 2

(
∂2

∂θ∂α
Lk(ϕ̃)− ∂2

∂θ∂α
Lk(ϕ0)

)
(θ̂k − θ0)(α̂k − α0)

+ 2

(
∂2

∂θ∂β
Lk(ϕ̃)− ∂2

∂θ∂β
Lk(ϕ0)

)
(θ̂k − θ0)(β̂k − β0)

+ 2

(
∂2

∂α∂β
Lk(ϕ̃)− ∂2

∂α∂β
Lk(ϕ0)

)
(α̂k − α0)(β̂k − β0)

and its elements are o(k−τ ) according to Lemma 3.2.5 and Corollary 3.2.6.

- Similarly for the difference

D2
(cϕk−ϕ0)Lk(ϕ0)− k

(
θ̂k − θ0, α̂k − α0, β̂k − β0

)
M

( θ̂k − θ0

α̂k − α0

β̂k − β0

)

=

(
∂2

∂θ2
Lk(ϕ0) + k mθθ

)
(θ̂k − θ0)

2

+

(
∂2

∂α2
Lk(ϕ0) + k mαα

)
(α̂k − α0)

2

+

(
∂2

∂β2
Lk(ϕ0) + k mββ

)
(β̂k − β0)

2

+ 2

(
∂2

∂θ∂α
Lk(ϕ0) + k mθα

)
(θ̂k − θ0)(α̂k − α0)

+ 2

(
∂2

∂θ∂β
Lk(ϕ0) + k mθβ

)
(θ̂k − θ0)(β̂k − β0)

+ 2

(
∂2

∂α∂β
Lk(ϕ0) + k mαβ

)
(α̂k − α0)(β̂k − β0)

and its elements are o(k−τ ) according to the Marcinkiewicz-Zygmund law (3.21) and
Corollary 3.2.6.
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- The difference

k
(
θ̂k − θ0, α̂k − α0, β̂k − β0

)
M

( θ̂k − θ0

α̂k − α0

β̂k − β0

)

− 1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)

is o(k−τ ) according to the Corollary 3.2.7.

Summarizing these three results we obtain that the right side of (3.64) is o(k−τ ) a.s.

We introduce A(x) =
√

2 log x and Dd(x) = 2 log x+(d/2) log log x− log Γ(d/2), similarly
as in Theorem A.1.1.

Theorem 3.2.9. The asymptotic distribution of the maximum likelihood statistic for test-
ing the problem (3.7) under H0 provided α0 > 2 is given by

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λ

(0)
k )

)1/2

≤ t + D3(log(n))

)
= exp(−e−t)

and for the maximum likelihood statistic for testing the problem (3.8) we have

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λk)

)1/2

≤ t + D3(log(n))

)
= exp(−2e−t)

for all t ∈ R.

Proof. Using Theorem 3.2.8 we can similarly as in Csörgő and Horváth [7] prove that

∣∣∣ max
1≤k≤n

(
2 (Lk(ϕ̂k)− Lk(ϕ0))

)

− max
1≤k≤n

1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)∣∣∣

= oP (log log n)

and the assertion of Theorem 3.2.9 is an easy consequence.

Now, coming back to the GEV distribution and using parameters µ, ψ, ξ we can write the
Theorem 3.2.9 as follows.
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Theorem 3.2.10. Provided −1
2

< ξ < 0, the asymptotic distribution of the maximum
likelihood statistic for testing the problem (3.2) under H0 is given by

lim
n→∞

P
(
A(log n)

(
max

0≤k≤n−1
2 log(Λ

(0)
k )

)1/2

≤ t + D3(log(n)
)

= exp(−e−t)

and for the maximum likelihood statistic for testing the problem (3.3) we have

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λk)

)1/2

≤ t + D3(log(n))

)
= exp(−2e−t)

for all t ∈ R.

Proof. An easy consequence of the inequality α > 2.

3.3 The change-point detection for the Fréchet dis-

tributions

Now we concentrate on proving a similar theorem as Theorem 3.2.10 for parameter ξ > 0
corresponding to the Fréchet distribution Fréch (θ, α, β) with the density function (3.5)

h(x; θ, α, β) = αβ(x− θ)−α−1 exp{−β(x− θ)−α} for x ≥ θ,

= 0 for x < θ.

Suppose that X1, . . . , Xn are independent random variables, we are to test the null hy-
pothesis H0 against the alternative A1:

H0 : Xi ∼ Fréch (θ0, α0, β0), i = 1, . . . , n, (3.65)

A1 : there exists k ∈ { 0, . . . , n− n0} such that

Xi ∼ Fréch (θ0, α0, β0), i = 1, . . . , k,

Xi ∼ Fréch (θ, α, β), i = k + 1, . . . , n,

where the parameters (θ0, α0, β0) before the change point are known while (θ, α, β) 6=
(θ0, α0, β0) are unknown or to test the null hypothesis H0 against the alternative A2:

A2 : there exists k ∈ {n0, . . . , n− n0} such that

Xi ∼ Fréch (θ1, α1, β1), i = 1, . . . , k, (3.66)

Xi ∼ Fréch (θ2, α2, β2), i = k + 1, . . . , n,

where neither the parameters before nor after the change point are known and (θ1, α1, β1) 6=
(θ2, α2, β2). The constant n0 may be any fixed integer larger than three, α > 0 is an un-
known shape parameter, β > 0 is an unknown scale parameter and θ ∈ R is an unknown
location parameter.
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Our goal is to find the limit distribution of max0≤k≤n−1 2 log(Λk) for the problem (3.66),

resp. max0≤k≤n−1 2 log(Λ
(0)
k ) for the problem (3.65). At first we show an important char-

acteristic that the right tail of the density function h(x; θ, α, β) (defined in (3.5)) decreases
faster than any power of (x− θ).
Lemma 3.3.1. For every m ∈ R

lim
x→∞

(x− θ)m h(x; θ, α, β) → 0 for x ≥ θ

Proof. It is an easy consequence of a limit

lim
y→∞

yp

ey
= 0 for every p ∈ R.

The log likelihood of (3.5) is given by

Lk(θ, α, β) = k log α + k log β + (−α− 1)
k∑

i=1

log (Xi − θ)−
k∑

i=1

β (Xi − θ)−α . (3.67)

First and second derivatives of Lk(θ, α, β) are:

∂Lk

∂θ
=

k∑
i=1

[
(α + 1)

(Xi − θ)
− αβ(Xi − θ)−α−1

]
,

∂Lk

∂α
=

k∑
i=1

[
− log(Xi − θ) +

1

α
− β(Xi − θ)−α log(Xi − θ)

]
,

∂Lk

∂β
=

k∑
i=1

[
1

β
− (Xi − θ)−α

]
,

∂2Lk

∂θ2
=

k∑
i=1

[
(α + 1)

(Xi − θ)2
− α(α + 1)β(Xi − θ)−α−2

]
,

∂2Lk

∂θ∂α
=

k∑
i=1

[
1

(Xi − θ)
− β(Xi − θ)−α−1 − αβ(Xi − θ)−α−1 log(Xi − θ)

]
,

∂2Lk

∂θ∂β
=

k∑
i=1

[−α(Xi − θ)−α−1
]
,

∂2Lk

∂α2
=

k∑
i=1

[
− 1

α2
− β(Xi − θ)−α log2(Xi − θ)

]
,
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∂2Lk

∂α∂β
=

k∑
i=1

[−(Xi − θ)−α log(Xi − θ)
]
,

∂2Lk

∂β2
=

k∑
i=1

[
− 1

β2

]
.

(3.68)

It holds

E
( ∂

∂θ

(
log h(Xi; ϕ0)

))
= 0, (3.69)

E
( ∂

∂α

(
log h(Xi; ϕ0)

))
= 0,

E
( ∂

∂β

(
log h(Xi; ϕ0)

))
= 0.

According to Lemma 3.3.1, for every s ∈ R it holds

E
( ∂2

∂θ2

(
log h(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂θ∂α

(
log h(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂θ∂β

(
log h(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂α2

(
log h(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂α∂β

(
log h(Xi; ϕ0)

))s

< ∞,

E
( ∂2

∂β2

(
log h(Xi; ϕ0)

))s

< ∞.

Let’s denote a Fisher information matrix M on a parameter ϕ0 = (θ0, α0, β0) with elements

M =




mθθ mθα mθβ

mαθ mαα mαβ

mβθ mβα mββ


 ,

where

mθθ = E{ ∂

∂θ
log(h(Xi; ϕ0))

∂

∂θ
log(h(Xi; ϕ0))}

= −E{ ∂2

∂θ2
log(h(Xi; ϕ0))},

mαα = E{ ∂

∂α
log(h(Xi; ϕ0))

∂

∂α
log(h(Xi; ϕ0))}

= −E{ ∂2

∂α2
log(h(Xi; ϕ0))},
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mββ = E{ ∂

∂β
log(h(Xi; ϕ0))

∂

∂β
log(h(Xi; ϕ0))}

= −E{ ∂2

∂β2
log(h(Xi; ϕ0))},

mθα = mαθ = E{ ∂

∂θ
log(h(Xi; ϕ0))

∂

∂α
log(h(Xi; ϕ0))}

= −E{ ∂2

∂θ∂α
log(h(Xi; ϕ0))},

mθβ = mβθ = E{ ∂

∂θ
log(h(Xi; ϕ0))

∂

∂β
log(h(Xi; ϕ0))}

= −E{ ∂2

∂θ∂β
log(h(Xi; ϕ0))},

mαβ = mβα = E{ ∂

∂α
log(h(Xi; ϕ0))

∂

∂β
log(h(Xi; ϕ0))}

= −E{ ∂2

∂α∂β
log(h(Xi; ϕ0))}. (3.70)

A maximum likelihood estimator based on X1, . . . , Xk (when it exists) will be denoted by

ϕ̂k = (θ̂k, α̂k, β̂k) and satisfies

∂Lk

∂θ
(ϕ̂k) = 0,

∂Lk

∂α
(ϕ̂k) = 0,

∂Lk

∂β
(ϕ̂k) = 0. (3.71)

The existence of ϕ̂k = (θ̂k, α̂k, β̂k) is guaranteed by Theorem A.3.1, see Appendix.

M is a positive definite matrix. According to the Marcinkiewicz-Zygmund law, (see
Appendix - Theorem A.3.2) we obtain for the Fréchet distribution following relations:
for any τ such that 0 < τ < 1

2

lim
k→∞

kτ
(1

k

∂2

∂θ2
Lk(ϕ0) + mθθ

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂θ∂α
Lk(ϕ0) + mθα

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂θ∂β
Lk(ϕ0) + mθβ

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂α2
Lk(ϕ0) + mαα

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂α∂β
Lk(ϕ0) + mαβ

)
= 0 a.s.,

lim
k→∞

kτ
(1

k

∂2

∂β2
Lk(ϕ0) + mββ

)
= 0 a.s.

(3.72)
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Similarly, applying the law of the iterated logarithm (Appendix - Theorem A.3.3) we get:

lim sup
k→∞

∂
∂θ

Lk(ϕ0)√
k log log k

= O(1) a.s.,

lim sup
k→∞

∂
∂α

Lk(ϕ0)√
k log log k

= O(1) a.s.,

lim sup
k→∞

∂
∂β

Lk(ϕ0)√
k log log k

= O(1) a.s.

(3.73)

For the reparameterization (3.5) we can prove similar lemma as for the Weibull dis-
tribution.

Lemma 3.3.2. For any sequence {δk} satisfying δk k1/τ → 0 and for any τ such that
0 < τ < 1

2

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂θ2
Lk(ϕ)− ∂2

∂θ2
Lk(ϕ0)

∣∣∣
)

= 0 a.s.,

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂θ∂α
Lk(ϕ)− ∂2

∂θ∂α
Lk(ϕ0)

∣∣∣
)

= 0 a.s.,

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂θ∂β
Lk(ϕ)− ∂2

∂θ∂β
Lk(ϕ0)

∣∣∣
)

= 0 a.s.,

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂α2
Lk(ϕ)− ∂2

∂α2
Lk(ϕ0)

∣∣∣
)

= 0 a.s.,

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂α∂β
Lk(ϕ)− ∂2

∂α∂β
Lk(ϕ0)

∣∣∣
)

= 0 a.s.,

lim
k→∞

kτ

(
sup
Iδk

1

k

∣∣∣ ∂2

∂β2
Lk(ϕ)− ∂2

∂β2
Lk(ϕ0)

∣∣∣
)

= 0 a.s. (3.74)

Proof. We can use similar arguments for the terms in second derivatives as in the proof
of Lemma 3.2.3 for the three parameter Weibull distribution from previous section. Sub-
stituting second derivatives from (3.68) to the differences of the second derivatives (3.74)
results in the differences of terms, which are discontinuous at the points Xi = θ. Using
the Taylor expansion for these differences, we obtain terms of the type

1

(Xi − θ)m
logp(Xi − θ), where m > 0, p ≥ 0. (3.75)

Applying Lemma 3.3.1, we get that all the expectations of the terms (3.75) are finite and
then, similarly as for the three parameter Weibull distribution, we get Lemma 3.3.2.
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Theorem 3.3.3. The asymptotic distribution of the maximum likelihood statistic for test-
ing the problem (3.65) under H0 provided ξ > 0 is given by

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λ

(0)
k )

)1/2

≤ t + D3(log(n))

)
= exp(−e−t)

and for the maximum likelihood statistic for testing the problem (3.66) we have

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λk)

)1/2

≤ t + D3(log(n))

)
= exp(−2e−t)

for all t.

Proof. Similarly to the Weibull distribution, it can be proved
∣∣∣ max

1≤k≤n

(
2 (Lk(ϕ̂k)− Lk(ϕ0))

)

− max
1≤k≤n

1

k

(
∂

∂θ
Lk(ϕ0),

∂

∂α
Lk(ϕ0),

∂

∂β
Lk(ϕ0)

)
M−1

( ∂
∂θ

Lk(ϕ0)
∂

∂α
Lk(ϕ0)

∂
∂β

Lk(ϕ0)

)∣∣∣

= oP (log log n)

and the assertion of Theorem 3.3.3 is an easy consequence.

Using the facts from the Theorem 3.2.10 and Theorem 3.3.3, we get the asymptotic
distribution of the GEV distribution.

Theorem 3.3.4. The asymptotic distribution of the maximum likelihood statistic for test-
ing the problem (3.2) under H0 provided ξ > −1

2
is given by

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λ

(0)
k )

)1/2

≤ t + D3(log(n))

)
= exp(−e−t)

and for the maximum likelihood statistic for testing the problem (3.3) we have

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λk)

)1/2

≤ t + D3(log(n))

)
= exp(−2e−t)

for all t.

Asymptotic critical values of the testing statistic max0≤k≤n−1 2 log(Λk) calculated for dif-
ferent values n according to Theorem 3.3.4 are listed in the following table.

α = 0.05 α = 0.01
n=200 18.65 27.15
n=250 18.75 27.17
n=500 19.05 27.21
n=1000 19.3 27.28

Table 6. Asymptotic critical values of the testing statistic max0≤k≤n−1 2 log(Λk) for
different values n.
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3.4 Results

We tried to fit a GEV distribution to the minus annual minima as well as to the an-
nual maxima and test for a change in all three parameters. The null hypothesis H and
the alternative hypothesis A for a change in all three parameters may be set as in (3.3):

H : Yi ∼ GEV (µ, ψ, ξ), i = 1, . . . , n,

A : ∃ k ∈ {1, . . . , n− 1} such that

Yi ∼ GEV (µ1, ψ1, ξ1), i = 1, . . . , k,

Yi ∼ GEV (µ2, ψ2, ξ2), i = k + 1, . . . , n,

where the parameters (µ1,ψ1, ξ1) 6= (µ2,ψ2, ξ2) are unknown both before as well as after
the change point. Testing of the problem above may be based on the likelihood ratio Λk,
more specifically

max
3≤k≤n−3

2 log Λk = max
3≤k≤n−3

2
(
Lk(µ̂k, ψ̂k, ξ̂k) + L∗k(µ̂

∗
k, ψ̂

∗
k, ξ̂

∗
k)− Ln(µ̂n, ψ̂n, ξ̂n)

)
,

where

Lk(µ̂k, ψ̂k, ξ̂k) =
k∑

i=1

log h(x; µ̂k, ψ̂k, ξ̂k), L∗k(µ̂
∗
k, ψ̂

∗
k, ξ̂

∗
k) =

n∑

i=k+1

log h(x; µ̂∗k, ψ̂
∗
k, ξ̂

∗
k)

and µ̂k, ψ̂k, ξ̂k are the maximum likelihood estimators of the parameters based on the
first k observations, while µ̂∗k, ψ̂∗k, ξ̂∗k are the maximum likelihood estimators based on
the last n − k observations. We recall that for every k under H the statistic 2 log Λk

is asymptotically distributed according to a χ2 distribution with 3 degrees of freedom.
Theoretically, the approximate critical values may be calculated using the asymptotic
behavior of

(
max3≤k≤n−3 2 log Λk)

1/2. However, to obtain maximum of all log-likelihood
ratios we have to calculate maximum-likelihood estimates for all possible splits, i.e. for
all time points k = 3, . . . , n − 3. According to our experience good estimates of the
parameters are obtained only if they are calculated from 50 observations at least. That
is why we recommend to use a test statistic

TT3 =
(

max
50≤k≤n−50

2 log Λk

)1/2
, α ∈ (0, 1).

The limit distribution of the statistic TT3 is given by the asymptotics:

P

((
max

k0≤k≤n−k0

2 log Λk

)1/2
>

x + bn3

an3

)
≈ 1− exp

{−2 e−x
}

, (3.76)

where

an3 =
√

2 log log n,

bn3 = 2 log log n + (3/2) log log log n− log Γ
(
3/2

)
.
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We tried to fit a GEV distribution to the minus annual minima as well as to the an-
nual maxima and test for a change in all three parameters using the test statistic TT3.
Table 7 shows values of TT 2

3 for annual minima as well as for annual maxima. The num-
bers in red denote significant values, compare with the asymptotical critical values in
Table 6 for n = 250.

TT 2
3 TT 2

3

Brussels min 7.62 Brussels max 70.4
Cadiz min 26.8 Cadiz max 14.2
Milan min 25.0 Milan max 27.2
Padua min 7.3 Padua max 5.4
St. Peter. min 26.0 St. Peter. max 9.4
Stockholm min 38.2 Stockholm max 17.8
Uppsala min 32.4 Uppsala max 13.0
Prague min 24.4 Prague max 22.0

Table 7. The values of the statistic TT 2
3 .

As the number of the trimmed portion is too large, we propose another way of the asymp-
totics. Under H the following approximation holds true for large values of u2:

P
(

max
dβ ne≤k≤n−dβ ne

2 log Λk > u2) ≈ 2 log(1−β
β

)
u3e−u2/2

23/2Γ(3/2)
. (3.77)

The asymptotic 5% critical value for the statistic TT 2
3 obtained by (3.77) with β = 0.2

is equal to 11.14. We fit again the GEV distribution to the minus annual minima as well
as to the annual maxima and test for a change in all three parameters using the test
statistic TT 2

3 with β = 50/n
.
= 0.2. Table 8 presents the results for a change in all three

parameters of the GEV distribution for the minimal values with significant values of the
testing statistic denoted in red , Table 9 presents the same for the minimal values.
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µ ψ ξ TT 2
3

Brussels min 6.02 3.56 -0.29 7.62
5.08 2.78 -0.15

Cadiz min -6.73 2.57 0.00 26.8
-6.42 1.68 -0.25

Milan min 4.04 2.66 -0.15 25.0
2.72 1.94 -0.14

Padua min 3.22 2.38 -0.06 7.3
2.50 1.85 0.00

St. Peter. min 22.9 5.10 -0.28 26.0
19.78 4.37 -0.22

Stockholm min 14.94 4.19 -0.25 38.2
11.92 3.07 -0.09

Uppsala min 17.04 5.36 -0.35 32.4
14.68 3.61 -0.18

Prague min 10.95 5.07 -0.29 24.4
8.53 3.44 -0.12

Table 8. Change in all three parameters of GEV for minus annual minima using TT 2
3

with β = [50/n].

µ ψ ξ TT 2
3

Brussels max 22.0 1.51 -0.30 70.4
24.0 1.69 -0.25

Cadiz max 28.5 1.37 -0.24 14.2
29.3 1.34 -0.21

Padua max 27.0 1.21 -0.26 5.4
27.2 1.15 -0.12

Milan max 27.1 1.35 -0.11 27.2
27.9 1.14 -0.28

St. Peter. max 22.8 1.86 -0.24 9.4
23.5 1.80 -0.36

Stockholm max 22.7 1.71 -0.49 17.8
21.4 1.89 -0.21

Uppsala max 21.8 2.08 -0.31 13.0
21.4 1.89 -0.21

Prague max 25.2 1.56 -0.15 22.0
26.3 1.39 -0.21

Table 9. Change in all three parameters of GEV for annual maxima using TT 2
3 with

β = [50/n].
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3.5 Conclusion

The GEV distribution fit was in all the cases far from being perfect. It worked better for
the minus minimal values than for the maximal values, where surprisingly a normal dis-
tribution seems to be a better model than a GEV distribution as the annual maxima are
almost symmetric. Moreover, to find numerically the maximum likelihood estimates for
all three parameters together with the corresponding value of the log-likelihood function
is a difficult task. We recommend to use this approach only if the analyzed series is very
long. It seems that even 200 is not enough.

More specifically, in the case of the annual maxima the change in location was evidently
present in the Brussels series and it was slightly less evident for the Cadiz series. It seems
that the Stockholm annual maximal series decreases. Furthermore, shortly after the be-
ginning the Milan annual maxima series contains a several very high temperatures which
appear never again later. This is mainly the reason why when applying the GEV distri-
bution for modelling the Milan maxima, the null hypothesis H of stationarity is rejected
(there is a strong decrease in the shape parameter). If we omit the first 30 observations,
the value TT3 goes down. Nevertheless, it seems that a small increase in location is present
here as well. Figures 34 – 41 presenting densities before the estimated change point (solid
line) and after the change point (dashed line) accompanied by Table 10 presenting 5%,
50% and 95% quantizes of the estimated GEV distributions suggest that there might be
a slight increase in distribution of maxima of almost all series (with an exception of the
Stockholm series), nevertheless it is very small. The hypothesis expressed by climatolo-
gists that due to climate change the occurrence of extremal high temperatures becomes
more frequent seems to be false.
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Figure 34. Brussels (annual maxima in
◦C) - fitted GEV densities.

Figure 35. St. Petersburg (annual max-
ima in ◦C) - fitted GEV densities.
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Figure 36. Cadiz (annual maxima in
◦C) - fitted GEV densities.

Figure 37. Stockholm (annual maxima
in ◦C) - fitted GEV densities.
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Figure 38. Milan (annual maxima in ◦C)
- fitted GEV densities.

Figure 39. Prague (annual maxima in
◦C) - fitted GEV densities.
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Figure 40. Padua (annual maxima in
◦C) - fitted GEV densities.

Figure 41. Uppsala (annual maxima in
◦C) - fitted GEV densities.
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quant. Brussels Brussels quant. St. Petersburg St. Petersburg
first part second part first part second part

5 % 20.0 21.9 5 % 20.5 21.1
50 % 22.5 24.6 50 % 23.5 24.1
95 % 25.0 27.5 95 % 26.8 26.8

quant. Cadiz Cadiz quant. Stockholm Stockholm
first part second part first part second part

5 % 26.8 27.6 5 % 20.2 19.1
50 % 29.0 29.8 50 % 23.3 22.1
95 % 31.4 32.3 95 % 25.4 25.6

quant. Milan Milan quant. Padua Padua
first part second part first part second part

5 % 25.5 26.4 5 % 25.5 25.9
50 % 27.6 28.3 50 % 27.4 27.7
95 % 30.5 30.2 95 % 29.5 30.1

quant. Upsala Uppsala quant. Prague Prague
first part second part first part second part

5 % 19.0 19.0 5 % 23.3 24.6
50 % 22.5 21.7 50 % 25.7 26.8
95 % 25.8 24.9 95 % 28.9 39.4

Table 10. Several quantizes of estimated GEV distribution of annual maxima before and
after a change point.

When analyzing the annual minimal series, the tests confirm a clear increase in the Cadiz,
Milan, St. Petersburg, Stockholm, Uppsala and Prague series, while the increase in
Brussels and Padua annual minimal temperatures was not significant. Moreover, if we
look at the values of the parameters of a GEV distribution before and after the change
point more closely, we see that a change in the location parameter is more striking and a
shift in the location parameter is accompanied by a decrease of the scale parameter and
an increase of the parameter of asymmetry. Figures 42 – 49 presenting densities before the
estimated change point (solid line) and after the change point (dashed line) accompanied
by Table 11 presenting 5%, 50% and 95% quantizes of the estimated GEV distributions
give us an idea what are the main futures of change in distribution. The hypothesis that
winters become milder as extremely cold days appear less frequent seems to be correct.
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Figure 42. Brussels (annual minima in
◦C) - fitted GEV densities.

Figure 43. St. Petersburg (annual min-
ima in ◦C) - fitted GEV densities.
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Figure 44. Cadiz (annual minima in ◦C)
- fitted GEV densities.

Figure 45. Stockholm (annual minima
in ◦C) - fitted GEV densities.
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Figure 46. Milan (annual minima in ◦C)
- fitted GEV densities.

Figure 47. Prague (annual minima in
◦C) - fitted GEV densities.
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Figure 48. Padua (annual minima in ◦C)
- fitted GEV densities.

Figure 49. Uppsala (annual minima in
◦C) - fitted GEV densities.

quant. Brussels Brussels quant. St. Petersburg St. Petersburg
first part second part first part second part

5 % -13.1 -11.8 5 % -33.2 -29.3
50 % -7.3 -6.1 50 % -24.7 -21.3
95 % -1.5 -1.8 95 % -16.4 -14.4

quant. Cadiz Cadiz quant. Stockholm Stockholm
first part second part first part second part

5 % -0.9 2.9 5 % -23.7 -19.9
50 % 5.8 5.8 50 % -16.4 -13.0
95 % 9.5 8.5 95 % -9.7 -8.4

quant. Milan Milan quant. Padua Padua
first part second part first part second part

5 % -10.4 -7.4 5 % -9.7 -8.0
50 % -5.0 -3.4 50 % -4.1 -3.2
95 % -0.9 -0.4 95 % -0.5 -0.5

quant. Uppsala Uppsala quant. Prague Prague
first part second part first part second part

5 % -26.8 -24.7 5 % -21.1 -17.1
50 % -19.2 -16.6 50 % -12.7 -9.8
95 % -9.3 -10.6 95 % -4.4 -4.4

Table 11. Several quantizes of estimated GEV distribution of annual minima before and
after a change point.

Using the results of our statistical inference it is possible to say that the increase in the
annual minimal temperatures is usually more pronounced than the increase in the annual
maximal temperatures. (We even discovered a decrease in the Stockholm annual maximal
temperatures.) This is in agreement with the remark of Camuffo and Jones [6] who
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claim: Analysis of the distribution of extreme events, undertaken using the results from
IMPROVE, has shown that for most of the study sites the recent warming is characterized
more by a decrease in frequency of the coldest days than by increase in frequency of the
warmest.



Problem 2

Application of change-point detection

for occurrences of unusually

hot, resp. cold days



Chapter 4

The change-point detection for
dependent data

Clearly, working with real temperature series, we can not expect that the condition of
independency is fulfilled, especially when the measurements are very close in time. The
study of our series shows that there is a strong correlation between daily temperature
values, the correlation between two subsequent days is for all series very close to 0.8, see
Figure 33. To obtain similar result concerning the distribution of the test statistic under
the hypothesis of stationarity for dependent variables, we use the almost sure approxima-
tion of the partial sums of random variables, satisfying a strong-mixing condition, by a
suitable Brownian motion and we show that the analogue of Csörgő and Horváth theorem
holds.

4.1 The change-point detection for strong-mixing se-

quences

We consider the following assumptions.

Let {X(i), i = 0, 1, 2, . . . , n}, {X(1)(i),i = 0, 1, 2, . . . , n}, {X(2)(i), i = 0, 1, 2, . . . , n} form

strictly stationary, strong-mixing sequences with mixing coefficients α(k) = O(r−k
0 )(4.1)

satisfying

EX(i) = µ, EX(1)(i) = µ1, EX(2)(i) = µ2, d := µ2 − µ1 6= 0,

E|X(i)|ν < ∞, E|X(1)(i)|ν < ∞, E|X(2)(i)|ν < ∞
with ν > 4 for all i = 0, 1, 2, . . . , n. (4.2)

We consider a sequence {Y (i), i = 0, 1, 2, . . . , n} and the hypotheses testing may be set
as follows:

57
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H0 : Y (i) = X(i), i = 1, . . . , n (4.3)

HA : there exists m∗ ∈ { 1, . . . , n− 1} such that

Y (i) = X(1)(i), i = 1, . . . , m∗,

Y (i) = X(2)(i), i = m∗ + 1, . . . , n.

The test for H0 against HA will be based on functionals of

Tn(t) = Sn(t)− tSn(1), (4.4)

where

Sn(t) =





n−1/2
∑

1≤i≤(n+1)t

Yi 0 ≤ t < 1,

n−1/2
∑

1≤i≤n

Yi t = 1.

Similarly as for linear processes in Theorem 4.1.3 of Csörgő and Horváth [7] we obtain
the following theorem for strong-mixing sequences.

Theorem 4.1.1. Assume conditions (4.1), (4.2) and H0 hold then we have for all x ∈ R

lim
n→∞

P
(
A(log n)

1

σ
sup

0<t<1

|Tn(t)|√
t(1− t)

≤ x + D(log n)
)

= exp(−2e−x),

where

σ2 = E(Y0 − µ)2 + 2
∞∑
i=1

E(Y0 − µ)(Yi − µ), (4.5)

A(x) =
√

2 log x, (4.6)

D(x) = 2 log x +
1

2
log log x− 1

2
log π. (4.7)

Proof. For simplicity denote {ei = (Yi − µ), i = 0, 1, 2, . . . , n}. Without loss of generality
we can assume that EY1 = EY2 = . . . = EYn = µ = 0. Then we can put Yi = ei, i =
0, 1, 2, . . . , n. We use Theorem 4 of Kuelbs and Philipp [21], see Appendix–Theorem A.4.8,
who proved for strong-mixing processes that we can redefine the sequence {ei} on a new
probability space together with a Brownian motion W (k) such that

∣∣∣∣∣
∑

1≤i≤k

ei − σW (k)

∣∣∣∣∣ = o(k
1
2
−β) a.s.

with some β > 0. Then similarly as in Yao and Davis [28] and in the proof of Theorem 4.1.3
in Csörgő and Horváth [7]

|Sn(1)| = Op(1), (4.8)
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lim
n→∞

P

(
(2 σ2 log log n)−1/2 sup

0<t≤1/2

|Tn(t)|/(t(1− t))1/2

)
=

lim
n→∞

P

(
(2 σ2 log log n)−1/2 sup

0<t≤1/ log n

|Tn(t)|/(t(1− t))1/2

)
= 1. (4.9)

By the stationarity of {ei,−∞ < i < ∞} we get

lim
n→∞

P

(
(2 σ2 log log n)−1/2 sup

1/2≤t<1

|Tn(t)|/(t(1− t))1/2

)
=

lim
n→∞

P

(
(2 σ2 log log n)−1/2 sup

1−1/ log n≤t<1

|Tn(t)|/(t(1− t))1/2

)
= 1. (4.10)

From (4.8), (4.9), (4.10) we conclude

sup
0<t≤1/ log n

|Tn(t)|/(t(1− t))1/2

= max
1≤k≤n/ log n

1

k1/2

∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣ + Op((log log n)1/2/ log n) (4.11)

and

sup
1−1/ log n<t<1

|Tn(t)|/(t(1− t))1/2

= max
n−n/ log n≤k<n

1

(n− k)1/2

∣∣∣∣∣
n∑

i=k+1

ei

∣∣∣∣∣ + Op((log log n)1/2/ log n). (4.12)

Using the limit theorem for standardized partial sums we obtain

lim
n→∞

P
(
A(log n)

1

σ
max

1≤k≤n/ log n

1

k1/2

∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣ ≤ u + D(log n)
)

= exp(−e−u), (4.13)

lim
n→∞

P
(
A(log n)

1

σ
max

n−n/ log n≤k<n

1

(n− k)1/2

∣∣∣∣∣
n∑

i=k+1

ei

∣∣∣∣∣ ≤ s + D(log n)
)

= exp(−e−s),

(4.14)

for all real s and u.
We need to prove that the random variables max

1≤k≤n/ log n

1
k1/2

∣∣∣∑k
i=1 ei

∣∣∣ and

max
n−n/ log n≤k<n

1
(n−k)1/2

∣∣∑n
i=k+1 ei

∣∣ in (4.13) and (4.14) are asymptotically independent.

But it is easy to see that for strong-mixing processes

P

(
max

1≤k≤n/ log n

1√
k

∣∣∣∣∣
∑

1≤i≤k

ei

∣∣∣∣∣ < an

⋂
max

n−n/ log n≤k<n

1√
n− k

∣∣∣∣∣
∑

k+1≤i≤n

ei

∣∣∣∣∣ < an

)
−

−P

(
max

1≤k≤n/ log n

1√
k

∣∣∣∣∣
∑

1≤i≤k

ei

∣∣∣∣∣ < an

)
P

(
max

n−n/ log n≤k<n

1√
n− k

∣∣∣∣∣
∑

k+1≤i≤n

ei

∣∣∣∣∣ < an

)
=

= r
(n−2 n

log n
)

o → 0 as n →∞ for 0 < r0 < 1.
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Hence (4.13) and (4.14) imply

lim
n→∞

P
(
A(log n)

1

σ
max

1≤k≤n/ log n

1

k1/2

∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣ ≤ t + D(log n),

A(log n)
1

σ
max

n−n/ log n≤k<n

1

(n− k)1/2

∣∣∣∣∣
n∑

i=k+1

ei

∣∣∣∣∣ ≤ s + D(log n)
)

= exp(−e−u − e−s), (4.15)

for all real u and s.

In practice we do not know the value of σ2 and the question of how to estimate the
variance σ2 in Theorem 4.1.1 is important. We can replace σ2 with an estimator, where
the rate of convergency to σ2 must be at least op((log log n)−1), which is, according to
following lemmas, fulfilled by an estimator:

σ̂2 = R̂(0) + 2

ψ(n)∑
i=1

R̂(i), (4.16)

where R̂(j) = 1
n

n−j∑
i=1

(
Yi − Yn

) (
Yi+j − Yn

)
and Yn = 1

n

∑
1≤j≤n Yj and ψ(n) tends to infin-

ity with a certain speed.

First of all we show some lemmas on the estimators {R̂(j), j = 0, 1, 2, . . .}. In order
to do this, it is simpler to work with the functions

R̃(j) =
1

n

n−j∑
i=1

(Yi − µ)(Yi+j − µ) =
1

n

n−j∑
i=1

ei ei+j j = 0, 1, 2, . . . (4.17)

which, according to a following lemma, has the same asymptotic properties as the sample
autocovariance function R̂(j).

Lemma 4.1.2.

R̂(0)− R̃(0) = Op(1/n)

R̂(j)− R̃(j) = Op(j/n), j = 1, 2, . . .

Proof. We can write

R̂(0) =
1

n

n∑
i=1

e2
i − en

2

and for each j = 1, 2, . . . , n

R̂(j) =
1

n

n−j∑
i=1

ei ei+j − en
2 + en

[
1

n

n∑
i=n−j+1

ei +
1

n

j∑
i=1

ei − j

n
en

]
.
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Since
en = Op(1/

√
n) (4.18)

and
(ei + . . . + ei+j) /n = Op(1/

√
n) for 1 ≤ i ≤ n, 1 ≤ i + j ≤ n, (4.19)

we conclude

R̂(0) = R̃(0) + Op(1/n) as n →∞,

R̂(j) = R̃(j) + Op(j/n) as n →∞.

For random variables {ei = (Yi−µ), i = 0, 1, 2, . . .} we denote their correlation coefficients

ρ(j) := Eeiei+j

and applying Corollary A.4.5 – a result for moment inequalities for strong-mixing random
sequences – we obtain a following corollary.

Corollary 4.1.3. Let emem+i and em+i+kem+i+k+j are bounded random variables, then
for all m, i, j ∈ Z and k ≥ 0

|Eemem+iem+i+kem+i+k+j − ρi ρj| ≤ Kα(k). (4.20)

Next lemma asses magnitude of bias for R̃(0), R̃(j) and R̃(i)R̃(j).

Lemma 4.1.4. Assume random variables {ei, i = 0, 1, 2, . . . , n} satisfy conditions (4.1),
(4.2). Then

E{R̃(0)}2 = (ρ(0))2 + O

(
1

n

)
, (4.21)

E{R̃(j)}2 = (ρ(j))2 + O

(
j

n

)
j = 1, 2, . . . (4.22)

E{R̃(i)R̃(j)} = ρ(i)ρ(j) + O

(
i + j

n

)
i = 0, 1, 2, . . . , j > i. (4.23)

Proof. We start with proving (4.22), as relation (4.21) is in fact a part of (4.22). At first
we study the estimators

R̃(j)2 =
1

n2
(e1ej+1 + . . . + en−jen)2 . (4.24)

The proof is based on the fact that the dependance between the variables decreases with
their distance in time exponentially fast. Therefore, the variables that are distant behave
”almost” as independent. We divide the terms of relation (4.24) into two parts, the first
part will contain only ”a little” terms written as a product of four factors epep+jeqeq+j,
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where the third index q satisfies q ∈ {p, . . . , p + j}, while for the second part, with
majority of terms written as a product of factors epep+jeqeq+j with the third index q
satisfying q /∈ {p, . . . , p+j} and this part will be estimated according to inequality (4.20).
According to this description we write then

(e1ej+1 + e2ej+2 + . . . + en−jen)2 = P1 + P2, (4.25)

where

P1 =

n−j∑
p=1

e2
pe

2
p+j + 2

n−j−1∑
p=1

min(p+j,n−j)∑
q=p+1

epep+jeqeq+j,

constrained by the condition that the third index q ∈ {p, . . . , p + j} and

P2 = 2

n−2j∑
p=1

n−j∑
q=p+j+1

epep+jeqeq+j,

with majority of terms with the third index q /∈ {p, . . . , p + j}.
Part P1 contains (n− j) + 2j(n− 2j) + (j − 1)j terms epep+jeqeq+j.
According to the Schwarz inequality and the assumption that E|ei|4 ≤ K, i = 0, 1, 2, . . . , n
it holds

E|epep+ieqeq+j| < ∞ for every p, i, j, q ∈ N
and it implies

E(P1)

n2
= O(1/n). (4.26)

Part P2 contains (n− 2j)(n− 2j − 1) terms which can be written as a sum

2 e1ej+1ej+2e2j+2 + . . . + 2 e1ej+1en−j−1en−1 + 2 e1ej+1en−jen+

2 e2ej+2ej+3e2j+3 + . . . + 2 e2ej+2en−jen+

...

2 en−2j−1en−j−1en−jen.

We can notice that the first column contains (n − 2j − 1) terms epep+jeqeq+j, where
p = 1, . . . , n−2j−1, q = p+ j +1 and applying (4.20) for each term in the first column
we obtain

2 |Eepep+jep+j+1ep+2j+1 − (ρ(j))2 | ≤ 2Kα(1).

Similarly the second column contains (n− 2j − 2) terms epep+jep+j+2ep+2j+2, where p =
1, . . . , n− 2j − 2 and for each term in the second column we have

2 |Eepep+jep+j+2ep+2j+2 − (ρ(j))2 | ≤ 2Kα(2).

The last column contains one term 2e1ej+1en−jen for which

2 |Ee1ej+1en−jen − (ρ(j))2 | ≤ 2Kα(n− 2j − 1).
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We sum all the terms in all the columns and obtain (n − 2j)(n − 2j − 1) terms of part
P2, for which

∣∣EP2 − (n− 2j)(n− 2j − 1) (ρ(j))2
∣∣ ≤

≤ 2K

n−2j−1∑

k=1

α(k)(n− 2j − k) = 2K

n−2j−1∑

k=1

rk
0(n− 2j − k) = O(n).

implying

EP2

n2
= ρ(j)2 +

(
4j2 + 2j

n2
− 4j + 1

n

)
(ρ(j))2 + O(

1

n
) = (ρ(j))2 + O(

j

n
). (4.27)

Substituting (4.26) and (4.27) into (4.25) gives

1

n2

(
E(P1 + P2)

)
= (ρ(j))2 + O(

j

n
)

and the expectation E{R̃(j)}2 fulfills (4.22).

The proof of (4.23) is very similar. For simplicity suppose i < j. We again divide
the terms of

R̃iR̃j =
1

n2
(e1ei+1 + . . . + en−ien) (e1ej+1 + . . . + en−jen) (4.28)

into two parts. The first part containing ”a little” terms written as a product of four
factors epep+ieqeq+j, where the third index q satisfies q ∈ {p, . . . , p + i} or where the first
index p satisfies p ∈ {q, . . . , q + j}. While for the second part, with majority of terms
written as a product of factors epep+ieqeq+j, the third index q satisfies q /∈ {p, . . . , p + i}
nor the first index p satisfies p /∈ {q, . . . , q + j}, and this part will be estimated according
to inequality (4.20).
According to this description we write then

(e1ei+1 + . . . + en−ien) (e1ej+1 + . . . + en−jen) = Q1 + Q2, (4.29)

where

Q1 =

n−j∑
p=1

epep+iepep+j +

n−j−1∑
p=1

min(p+i,n−j)∑
q=p+1

epep+ieqeq+j +

+
n−i∑
p=1

p−1∑

q=max(1,p−j)

epep+ieqeq+j

with the third index satisfying q ∈ {p, . . . , p + i} (this is fulfilled for the first two sums
on the right) or the first index p ∈ {q, . . . , q + j} (it holds true for the third sum on the
right)
and

Q2 =

n−j−1∑
p=1

n−j∑
q=p+j+1

epep+ieqeq+j +
n−i∑

p=j+2

p−j−1∑
q=1

epep+ieqeq+j,
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for which the third index q /∈ {p, . . . , p + i} (the first sum on the right) or the first index
p /∈ {q, . . . , q + j} (the second sum on the right).

Part Q1 contains (n − j) + j(n − 2j) + (j−1)j
2

+ (j+i+1)(j−i)
2

+ i(n − i − j) + (i−1)i
2

terms
epep+ieqeq+j. According to the Schwarz inequality and the assumption that E|ei|4 ≤ K, i =
0, 1, 2, . . . , n these terms satisfy

E|epep+jeqeq+j| < ∞ for every p, i, j, q ∈ N

and it implies
EQ1

n2
= O(

1

n
). (4.30)

Part Q2 contains (n− i− j)(n− i− j − 1) terms which can be written as a sum

e1ei+1ei+2ei+j+2 + e1ei+1ei+3ei+j+3 + . . . + e1ei+1en−jen+

e2ei+2ei+3ei+j+3 + e2ei+2ei+4ei+j+4 + . . . + e2ei+2en−jen+

...

en−i−j−1en−j−1en−jen,

and

e1e1+jej+2ej+2+i+
...

+ e1e1+jen−i−1en−1 + . . . + en−i−j−2en−i−2en−i−1en−1+
+ e1e1+jen−ien + e2e2+jen−ien + . . . + en−i−j−1en−i−1en−ien.

We can notice that in the first part the first column contains (n − i − j − 1) terms
epep+ieqeq+j with the third index q = p + i + 1 and in the second part the last column
contains (n− i− j − 1) terms epep+jeqeq+i with the third index q = p + j + 1. Applying
(4.20) for each term in the first column in the first part we obtain

|Eepep+iep+i+1ep+i+1+j − ρ(i)ρ(j)| ≤ Kα(1)

and for each term in the last column in the second part

|Eepep+jep+j+1ep+j+1+i − ρ(i)ρ(j)| ≤ Kα(1).

Similarly the second column in the first part contains (n− i− j − 2) terms
epep+iep+i+2ep+i+2+j and in the second part the last but one column contains (n−i−j−2)
terms epep+jep+j+2ep+j+2+i. Applying (4.20) for each term in the second column of the
first part we obtain

|Eepep+iep+i+2ep+i+2+j − ρ(i)ρ(j)| ≤ Kα(2)

and for each term in the last but one column of the second part

|Eepep+jep+j+2ep+j+2+i − ρ(i)ρ(j)| ≤ Kα(2).
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The last column in the first part contains one term e1ei+1en−jen and the first column in
the second part contains one term e1e1+jen−ien for which

E|e1e1+ien−jen − ρ(i)ρ(j)| ≤ Kα(n− i− j − 1),

E|e1e1+jen−ien − ρ(i)ρ(j)| ≤ Kα(n− i− j − 1).

We sum all the terms in all the columns and obtain (n − i − j)(n − i − j − 1) terms of
part Q2, for which

|E(Q2)− (n− i− j)(n− i− j − 1)ρ(i)ρ(j)|

≤ 2K

n−i−j−1∑

k=1

α(k)(n− i− j − k) = 2K

n−i−j−1∑

k=1

rk
0(n− i− j − k) = O(n),

implying

E(Q2)

n2
= ρ(i)ρ(j)−

(
i2 + 2ij + j2 + i + j

n2
− 2i + 2j + 1

n

)

= ρ(i)ρ(j) + O(
i + j

n
). (4.31)

Substituting (4.30) and (4.31) into (4.29) gives

1

n2

(
E(Q1 + Q2)

)
= ρ(i)ρ(j) + O(

i + j

n
)

and the expectation E{R̃(i)R̃(j)} fulfills (4.23).

Summarizing results of Lemma 4.1.2 and Lemma 4.1.4, we obtain a following corollary

for the estimator of the variance σ̂2
n = R̂(0) + 2

ψ(n)∑
i=1

R̂(i).

Corollary 4.1.5. For any sequence {ψ(n)}, ψ(n) ∈ N, ψ(n) ≤ n it holds

E

(
R̂(0) + 2

ψ(n)∑
i=1

R̂(i)

)
−

(
ρ(0) + 2

ψ(n)∑
i=1

ρ(i)

)
= O(1/n), (4.32)

E


R̂(0) + 2

ψ(n)∑
i=1

R̂(i)




2

−

ρ(0) + 2

ψ(n)∑
i=1

ρ(i)




2

= O

(
(ψ(n))3

n

)
. (4.33)

Proof. First we prove (4.32). For i = 0, 1, . . . it holds

R̂(i) ≤ |R̂(i)− R̃(i)|+ |R̃(i)− ρ(i)|+ ρ(i). (4.34)
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For the first term on the right of (4.34) we have, according to Lemma 4.1.2

E|R̂(0)− R̃(0)| = O(1/n)

E|R̂(j)− R̃(j)| = O(j/n), j = 1, 2, . . .

For the second term on the right of (4.34)

ER̃(0) = ρ(0) + O(1/n),

and for i = 1, 2 . . .

ER̃(i) =
n− i

n
ρ(i) = ρ(i) + O(iρ(i)/n).

Then

E

(
R̂(0) + 2

ψ(n)∑
i=1

R̂(i)

)
=

(
ρ(0) + 2

ψ(n)∑
i=1

ρ(i)

)
+ O(

ψ(n)∑
i=1

iρ(i)

n
)

Assumption (4.1) on correlation coefficients implies convergency of a series
∑ψ(n)

i=1 iρ(i)
yielding in relation (4.32).
Now we shall prove (4.33). Substituting equations (4.21), (4.22), (4.23) into the expecta-
tion

E


R̂(0) + 2

ψ(n)∑
i=1

R̂(i)




2

we obtain (4.33) as

E


R̂(0) + 2

ψ(n)∑
i=1

R̂(i)




2

= E
(
R̂(0)

)2

+ 4

ψ(n)∑
i=1

E
(
R̂(0)R̂(i)

)

+4

ψ(n)∑
i=1

E
(
R̂(i)

)2

+ 8

ψ(n)∑
i=1

ψ(n)∑
j>i

E
(
R̂(i)R̂(j)

)
=

=


ρ(0) + 2

ψ(n)∑
i=1

ρ(i)




2

+ O

(
(ψ(n))3

n

)
.

Now we are ready to prove a theorem which gives the rate of convergency of the proposed

estimators σ̂2
n = R̂(0) + 2

ψ(n)∑
i=1

R̂(i) to the variance σ2. For simplicity we introduce

σ̃2
n = ρ(0) + 2

ψ(n)∑
i=1

ρ(i).
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Theorem 4.1.6. For any sequence ψ(n) −→∞ such that (ψ(n))3 (log log n)2

n
−→ 0 it holds

∣∣∣∣


R̂(0) + 2

ψ(n)∑
i=1

R̂(i)


−

(
E(Y0 − µ)2 + 2

∞∑
i=1

E(Y0 − µ)(Yi − µ)

)∣∣∣∣ =

= op((log log n)−1).

Proof. Assumption (4.1) yields
∑∞

i=1 ρ(i) ≤ ∑∞
i=1 Cri

0 < ∞ and it implies it is sufficient
to prove

∣∣∣∣


R̂(0) + 2

ψ(n)∑
i=1

R̂(i)


−


ρ(0) + 2

ψ(n)∑
i=1

ρ(i)




∣∣∣∣ = op((log log n)−1).

We have

P

(
log log n

(
σ̂2

n − σ̃2
n

)
≥ ε

)
≤ log log n

ε2
E

(
σ̂2

n − σ̃2
n

)2

≤

≤ (log log n)2

ε2
2

[
E

(
σ̂2

n − Eσ̂2
n

)2

+ [Eσ̂2
n − σ̃2

n]2
]
≤

≤ (log log n)2

ε2

[
O

(
(ψ(n))3

n

)
+ O

(
1

n2

)]
,

as ψ(n) fulfills (ψ(n))3 (log log n)2

n
−→ 0 we obtain the assertion of Theorem 4.1.6.

4.2 Application

As was mentioned in Introduction, the aim of the second part of this thesis is to sug-
gest and apply methods for a change/s detection in appearance of unusually hot, resp.
cold days. More exactly, we create standardized daily series and count how often our se-
ries exceed some high, resp. low levels. The exceedance over high, resp. low level means
an appearance of unusually warm, resp. cold temperature for the corresponding calender
day. Applying the change-point analysis for dependent data (strong-mixing processes),
we try to decide whether the frequency of such days changed.

Figure 33 shows that in summer the autocorrelation coefficients for larger lags are smaller
than in winter. However, the difference is not extremely large and we simplify the situa-
tion and suppose that the data form a stationary sequence.

For our purposes we produced standardized temperature series. If we denote our data
{Xi, 1 ≤ i ≤ n}, then the standardized series {Xs

i , 1 ≤ i ≤ n} is obtained as

Xs
i =

Xi −Xyear,i

std(Xyear,i)
, 1 ≤ i ≤ n, (4.35)
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where Xyear,i, std(Xyear,i) denote a mean and a standard deviation of calender days cor-
responding to the ith measurement. For example,

Xs
366 =

X366 −Xyear,366

std(Xyear,366)
,

is the standardized value of 1st January obtained from the value X366 by extracting the
mean temperature of all 1st January temperatures during all years of observation and this
difference is divided by the standard deviation of all values of 1st January.

To define exceedances over thresholds we produce two new time series Y H
1 , Y H

2 , . . . , Y H
n

and Y C
1 , Y C

2 , . . . , Y C
n , where for i = 1, 2, . . . , n we denote

• unusually hot days

Y H
i = 1, Xs

i > h,

= 0, Xs
i ≤ h, (4.36)

• unusually cold days

Y C
i = 1, Xs

i < c,

= 0, Xs
i ≥ c. (4.37)

Levels h, c are suitably chosen constants.

Assume that standardized data Xs
1 , X

s
2 , . . . , X

s
n form a stationary ARMA sequence

Xs
i = ρ1X

s
i−1 + ρ2X

s
i−2 + . . . + ρpX

s
i−p + θ1εi−q + . . . + θqεi−1 + εi, (4.38)

where εi are i.i.d. random variables with Eεi = 0, Eε2
i = σ2

ε satisfying conditions
(1), (2), (5), (11) from Withers [27], see Appendix – conditions (A.5), (A.6), (A.9), (A.11).
Then {Xs

i , i = 1, 2, . . . , n} is a linear process which can be represented as

Xs
i =

∞∑
j=0

gjεi−j,

where
gk = O(kprk),

parameter r is defined in condition (11) in Withers [27], see Appendix – condition (A.11).
According to Withers [27], see Appendix Corollary A.4.3, Xs

i is also a strong-mixing
sequence with mixing coefficients

α(k) = O(rλk
0 ), where λ =

δ

1 + δ
, 1 > r0 > r,
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and the parameter δ is an exponent in condition (5) in Withers [27], confer Appendix.
Under these conditions exceedances over thresholds defined by random variables {Y H

i , i =
1, 2, . . . , n} or {Y C

i i = 1, 2, . . . , n} form strong-mixing sequences with the same mixing
coefficients α(k) = O(rλk

0 ) for 1 > r0 > r. The testing statistic of our problem has the
form

Tn(t) = sup
0<t<T





1√
T

∣∣N(t)− t
T
N(T )

∣∣

σ̂
√

t
T

(
1− t

T

)



 , (4.39)

where N(·) is the sum of variables
∑[(n+1)t]

1=1 Y H
i , resp.

∑[(n+1)t]
1=1 Y C

i , i.e. the number of
exceedances over the level H, resp. C during the period [0, T ] and σ̂2 is the estimator of
the variance defined at the beginning of this chapter as

σ̂2 = R̂(0) + 2

ψ(n)∑
i=1

R̂(i),

where R̂(j) = 1
n

n−j∑
i=1

(
Yi − Yn

) (
Yi+j − Yn

)
and Yn = 1

n

∑
1≤j≤n Yj and ψ(n) tends to infin-

ity with a certain speed.
The conditions of Theorem 4.1.1 are fulfilled and as a result the approximate critical
values can be obtained by the limit distribution of Tn(t) under H0.

As an example, we show the results for the standardized Milan series. The other obser-
vatories give similar results. To the given standardized data set we find an autoregressive
process AR(20). Figure 50 represents the autocorrelation function for the standardized
Milan series. The values of the autocorrelation function for small lags decrease exponen-
tially. That suggest that an autoregressive sequence might be a good model. However, for
larger lags the autocorrelation function does not die out. This is a typical feature when
the sequence has some trend or there is a change (or changes).
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Figure 50. Autocorrelation function for standardized data - Milan.

The estimator of variance was obtained by (4.16), the number of summands was chosen
equal to ψ(n) = 30.
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The levels h = 2.5, c = −2.5 from (4.36) and (4.37) are symmetric, the values were chosen
on purpose to assure sufficient number of exceedances.

For demonstration of the test results we provide two pairs of figures. A pair of graphs
in Figure 51 illustrates the case when we proved the change. The left figure shows the
plot of the statistic Tn(t) with a noticeable maximum, the right figure shows the sums of
exceedances - the vertical line shows the estimated point of the change. A pair of graphs
in Figure 52 show similar graphs for the case when H0 is not rejected, with smaller values
of the statistic Tn(t) than in Figure 51.
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Figure 51. Significant change. Left - the statistic Tn(t) with noticeable maximum,
right - the sum of exceedances, the vertical line shows the estimated point of the
change.
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Figure 52. Insignificant change. Left - the statistic Tn(t), right - the sum of ex-
ceedances, the vertical line shows the estimated point of the change.

Tables 12 and 13 provide results for appearance of unusually hot days. The values of
the statistic Tn(t) and the estimated date of change can be found in Table 12, significant
values are marked red. For observatories with significant values of the statistic Tn(t) we
also counted the frequency of occurrences of unusually hot days, which can be found in
Table 13. We can notice that the values in the first column corresponding to the fre-
quency before the change point are approximately three times smaller than the values
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in the second column with the estimated frequency of occurrences of unusually hot days
after the change point.

Tn(t) change point

Brussels over 2.5 11.26 21.7.1911
Cadiz over 2.5 5.97 5.6.1923
Milan over 2.5 6.12 29.4.1997
Padua over 2.5 2.67 20.8.1952
St.Petersburg over 2.5 4.53 2.6.1882
Stockholm over 2.5 3.85 17.4.1990
Uppsala over 2.5 3.04 16.6.1989
Prague over 2.5 6.82 11.4.1990

Table 12. First column - values of the statistic Tn(t), second column - estimated date of
change.

first part second part

Brussels 0.0021 0.014
Cadiz 0.0046 0.0111
Milan 0.0024 0.0233
St. Petersburg 0.0018 0.0049
Stockholm 0.0031 0.0096
Prague 0.0029 0.0119

Table 13. Estimated frequency of occurrences of unusually hot days. First column -
before the change point, second column - after the change point.

Tables 14 and 15 provide results for appearance of unusually cold days. The values of
the statistic Tn(t) and the estimated date of change can be found in Table 14, significant
values are marked red. Table 15 provides for observatories with significant values of the
statistic Tn(t) estimated frequencies of occurrences of unusually cold days. We can notice
that the values in the first column corresponding to the frequencies before the change
point are approximately three times higher than the values in the second column with the
estimated frequencies of occurrences of unusually cold days after the change point.

Tn(t) change point

Brussels under -2.5 3.75 8.12.1819
Cadiz under -2.5 3.10 15.2.1891
Milan under -2.5 3.19 14.1.1880
Padua under -2.5 6.20 18.1.1880
St.Petersburg under -2.5 6.16 27.6.1877
Stockholm under -2.5 7.40 2.8.1888
Uppsala under -2.5 6.30 10.8.1888
Prague under -2.5 4.39 13.3.1943

Table 14. First column - values of the statistic Tn(t), second column - estimated date of
change.
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first part second part

Stockholm 0.0139 0.0041
Uppsala 0.0134 0.0055
Padua 0.0146 0.0058
St. Petersburg 0.0110 0.0040
Prague 0.0097 0.0027

Table 15. Estimated frequency of occurrences of unusually cold days. First column -
before the change point, second column - after the change point.

We performed also one comparison – we studied the distribution of unusually hot, resp.
cold days within a year. Unfortunately, we were limited to work only with the complete
data, i.e. Brussels, Milan, Stockholm, Uppsala and Prague series. Figures 53–58 show
differently distributed occurrences of unusually cold days before and after the change
point. We studied Prague, Stockholm and Uppsala series with significant values of the
testing statistic Tn(t) and we can notice decreasing frequency of unusually cold days in
winter months and increasing frequency of unusually cold days in the summer period.
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Figure 53. Distribution of unusually
cold days in Prague before the change
during a year.

Figure 54. Distribution of unusually
cold days in Prague after the change dur-
ing a year.
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Figure 55. Distribution of unusu-
ally cold days in Stockholm before the
change during a year.

Figure 56. Distribution of unusually
cold days in Stockholm after the change
during a year.
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Figure 57. Distribution of unusually
cold days in Uppsala before the change
during a year.

Figure 58. Distribution of unusually
cold days in Uppsala after the change
during a year.

Figures 59–66 show the distribution of unusually hot days for Brussels, Prague, Milan
and Stockholm series with significant values of the statistic Tn(t). We can notice a de-
creasing frequency of unusually hot days in summer months and an increasing frequency
of unusually hot days in winter.
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Figure 59. Distribution of unusually hot
days in Brussels before the change dur-
ing a year.

Figure 60. Distribution of unusually hot
days in Brussels after the change during
a year.

Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.05

0.1

0.15

0.2

0.25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.05

0.1

0.15

0.2

0.25

Figure 61. Distribution of unusually hot
days in Prague before the change during
a year.

Figure 62. Distribution of unusually hot
days in Prague after the change during
a year.
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Figure 63. Distribution of unusually hot
days in Milan before the change during
a year.

Figure 64. Distribution of unusually hot
days in Milan after the change during a
year.
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Figure 65. Distribution of unusually
hot days in Stockholm before the change
during a year.

Figure 66. Distribution of unusually hot
days in Stockholm after the change dur-
ing a year.

The changing histograms of unusually hot, resp. cold days within a year raised another
question – Does the number of unusually hot, resp. cold days change within every particu-
lar month in a year? Figures 67–78 provide a detailed numbers of unusually cold days for
particular months in Prague series during 230 years of measurement, figures 79–90 show
the same for unusually hot days in Brussels series during 232 years of measurement. The
red vertical lines are the estimated points of the change.
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Figure 67. January. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.

Figure 68. February. The number of
unusually cold days in Prague. The red
vertical line shows the estimated change
point.
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Figure 69. March. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.

Figure 70. April. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.
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Figure 71. May. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.

Figure 72. June. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.
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Figure 73. July. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.

Figure 74. August. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.
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Figure 75. September. The number of
unusually cold days in Prague. The red
vertical line shows the estimated change
point.

Figure 76. October. The number of un-
usually cold days in Prague. The red
vertical line shows the estimated change
point.
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Figure 77. November. The number of
unusually cold days in Prague. The red
vertical line shows the estimated change
point.

Figure 78. December. The number of
unusually cold days in Prague. The red
vertical line shows the estimated change
point.
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Figure 79. January. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.

Figure 80. February. The number of
unusually hot days in Brussels. The red
vertical line shows the estimated change
point.
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Figure 81. March. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.

Figure 82. April. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.
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Figure 83. May. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.

Figure 84. June. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.
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Figure 85. July. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.

Figure 86. August. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.
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Figure 87. September. The number
of unusually Brussels days in Brussels.
The red vertical line shows the estimated
change point.

Figure 88. October. The number of un-
usually hot days in Brussels. The red
vertical line shows the estimated change
point.
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Figure 89. November. The number of
unusually hot days in Brussels. The red
vertical line shows the estimated change
point.

Figure 90. December. The number of
unusually hot days in Brussels. The red
vertical line shows the estimated change
point.

The previous figures suggest decreasing number of unusually cold days, especially for
winter months, and an increasing number of unusually hot days during the whole year.
For better comparison we counted the mean number of unusually cold days in Prague and
the mean number of unusually hot days in Brussels for particular months before and after
the change and we obtain a following Table 16 confirming in Prague series a decreasing
number of unusually cold days in winter months and an increasing number of unusually
hot days within the whole year for Brussels. Similar results were obtained for the other
observatories – Milan, Stockholm and Uppsala.
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Prague Prague Brussels Brussels
first part second part first part second part

January 0.6707 0.3651 0.0000 0.0000
February 0.6587 0.2381 0.0139 0.0227
March 0.3832 0.0952 0.0347 0.3182
April 0.1617 0.0317 0.1181 0.4886
May 0.1257 0.0794 0.0625 0.5909
June 0.0599 0.0159 0.1042 0.6250
July 0.0000 0.0317 0.1181 0.9886
August 0.0120 0.0317 0.1319 0.9545
September 0.0539 0.0000 0.0486 0.6477
October 0.1916 0.0476 0.0208 0.4205
November 0.3593 0.0476 0.0000 0.0114
December 0.8024 0.2063 0.0097 0.0027

Table 16. The mean numbers of occurrences of unusually cold days in Prague before and
after the change in particular months. The mean numbers of occurrences of unusually

hot days in Brussels before and after the change in particular months.

4.3 Conclusion

The broadly accepted hypothesis of global warming stimulated an interest for temper-
ature series. Some scientists assume that the change does not necessarily occur in the
mean of the series but rather in some other characteristics, e.g. appearance of some ex-
treme events or increase of difference between summer and winter temperatures etc. In
the second part of the thesis we concentrated on studying appearances of unusually hot,
resp. cold days. More precisely, we were looking for a change in time series of indicators
of an event that the standardized value exceeds a certain level. An analogue of Csörgő
and Horváth theorem was proved for strong-mixing sequences providing critical values of
the limit distribution of Tn under H0.

When analyzing the exceedances over the level 2.5, the tests confirm a clear increase
in the Brussels, Cadiz, Milan, St. Petersburg, Prague and Stockholm series with frequen-
cies of these occurrences three times higher in the second part than before the estimated
change, while the increase in Padua and Uppsala occurrences of unusually hot days was
not significant. We were also trying to estimate the change point and found out that the
change occurred at the end of 19th century or at the beginning of 20th century. There are
two exceptions - Milan and Stockholm series, with the estimated change at the end of
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20th century. This might be due to different kind of data, as climatologists who analyzed
the Milan and Stockholm series tried to remove ”heat island effect” in these series, while
the authors of the other series were not able to do it, see Camuffo and Jones [6]. We tried
to find the second changes in those two series and the significant second change occurred
for the Milan series again at the beginning of 20th century. The second change for the
Stockholm series was not significant.

For the exceedances under the level -2.5, the tests confirm a clear decrease in the Upp-
sala, Padua, St. Petersburg, Prague and Stockholm series with frequencies about three
times smaller in the second part than before the estimated change, while the decrease in
Brussels, Cadiz and Milan occurrences of unusually cold days was not significant. The
estimated change point occurred at the end of 19th century.

We also studied the distributions of unusually hot, resp cold days within a year. For
observatories with significant values of the statistic Tn(t) we detected also a change in
their distributions suggesting for unusually cold days a decreasing frequency in winter
months and an increasing frequency in the summer. Distribution of unusually hot days
during a year suggest a decreasing frequency in the summer and an increasing frequency
in winter months. What concerns the mean numbers of unusually cold days, we detected
an increasing mean numbers of unusually hot days in Brussels during the whole year and
a decreasing number of unusually cold days in winter months for Prague series.

Although our results might suggest confirmation of the hypothesis that the increased
mean of temperature observed since the end of 19th century and a decreasing variability
of temperature series is related to the fact that extremely cold days appear less frequent
and extremal high temperatures become more frequent, we have to admit several problems
which might have influenced our results:

• the number of data. Although we were working with long temperature series, in
fact only about 200, resp. 800 observations satisfy our definition of unusually hot,
resp. cold day.

• a disproportion between the numbers of unusually hot, resp. cold days is caused by
a distinctive negative skewness of minimal temperatures, see Tables 3 and 4.

• heat island effect causing milder winters in city centers.

We hope that in the future the proposed change-point methods should be applied to the
series that are not affected by the heat island effect, that are divided into a summer and
winter periods and a climatologic definition of an unusually hot, resp. cold day should be
taken into account as a day whose maximum, resp. minimum temperature is within the
lowest 5th centile of the daily temperature series for each observatory and this way we
obtain more reasonable results.



Chapter 5

Block permutation

Throughout this chapter it will be more convenient to denote the sequences of random
variables by {Y (i), i = 1, 2, . . . }.

The other way of obtaining critical values of change-point tests is to use the permutation
principle. This method was first suggested by Antoch and Hušková [2]. The main tool in
deriving this method are limit theorems for rank statistics, see the work by Hušková [15]
or Appendix A.5. The sequence {Y (i)} is permuted randomly many times and for every
permutation the value of Tn(t) is calculated. Then the (1−α) 100% empirical quantile of
all {Tn(t)} serves as α 100% critical value. With the number of observations n increasing,
the obtained approximate critical values are getting closer and closer to the exact critical
values regardless our observations follow the null hypothesis or an alternative. So far,
this method has mostly been dealt with independent observations. Kirch [20] considered
block permutation principles for dependent data with errors forming a linear process. We
examine the behavior of this statistic for strong-mixing sequences.

5.1 Block permutation for strong-mixing sequences

The idea of block permutation is to split the observation sequence of length n into L
sequences of length K (i.e. n = K L), where the block contains enough information about
the dependency structure. K and L depend on n and converge to infinity with n. Instead
of permuting observations {Y (i)}, we permute the blocks Y (Kl+1), . . . , Y (K(l+1)), l =
0, . . . , L− 1, and compute the statistics using the permuted blocks.

We consider the following assumptions.

Let {X(i), i = . . . ,−2,−1, 0, 1, 2, . . .}, {X(1)(i), i = . . . ,−2,−1, 0, 1, 2, . . .}, {X(2)(i), i =
. . . ,−2,−1, 0, 1, 2, . . .} form

strictly stationary, strong-mixing sequences with mixing coefficients α(k) = O(r−k
0 )(5.1)

82
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satisfying

EX(0) = µ, EX(1)(0) = µ1, EX(2)(0) = µ2, d := µ2 − µ1 6= 0,

E|X(i)|ν < ∞, E|X(1)(i)|ν < ∞, E|X(2)(i)|ν < ∞
with ν > 4 for all i. (5.2)

We consider a sequence {Y (i), i = 0, 1, 2, . . . , n}. The hypotheses testing problem may be
set as follows:

H0 : Y (i) = X(i), i = 1, . . . , n, (5.3)

HA : there exists m∗ ∈ { 1, . . . , n− 1} such that

Y (i) = X(1)(i), i = 1, . . . , m∗,

Y (i) = X(2)(i), i = m∗ + 1, . . . , n.

Remark 5.1.1. According to Corollary A.4.5, the autocorrelation functions of {X(i)},
{X(1)(i)} and {X(2)(i)} decrease exponentially, i.e.

ρ(j) = E(X(i)− µ)(X(i + j)− µ) = E(X(0)− µ)(X(j)− µ)

≤ Crj
0. (5.4)

The same is true for {X(1)(i)} and {X(2)(i)}.

We assume that L →∞, K = K(L) →∞, n = n(L) = KL and K/L = O(1).
Let R = (R1, . . . , RL) is a random permutation of (1, . . . , L) independent of {Y (·)} chosen
with probability P (R = r) = 1

L!
for all permutations r = (r1, . . . , rL).

We are interested in the permutation statistic

TL,K(Y ) := max
2≤l≤L−1

max
1≤k≤K

√
LK

(K(l − 1) + k) (LK −K(l − 1)− k)
|SL,K(l, k)|, (5.5)

where

SL,K(l, k) =
l−1∑
i=1

K∑
j=1

(Y (K(Ri − 1) + j)− Y n) +
k∑

j=1

(Y (K(Rl − 1) + j)− Y n)

and Y n =
1

n

n∑
i=1

Y (i).

For the permutation result to hold true we standardize TL,K(Y ) using the variance of
the block statistic

σ̂2
LK =

1

KL

L−1∑

l=0

[
K∑

k=1

(Y (Kl + k)− Y n)

]2

.
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Its advantage is that it does not depend on the permutations, thus the outcome of the
permutation test is in fact independent of the actual value of the estimator. We prove
that under H0 the estimator of variance σ̂2

LK converges in probability to

σ2 = E(Y (0)2) + 2
∞∑

j=1

E(Y (0)− µ)(Y (j)− µ).

Similarly as in the previous chapter, we show some characteristics of the proposed es-
timator. First of all we have

1

K L

L−1∑

l=0

[ K∑

k=1

(
Y (Kl + k)− Y n

) ]2
=

=
1

K L

L−1∑

l=0

[
K∑

k=1

(
Y (Kl + k)− µ

)
]2

−K (Y n − µ)2. (5.6)

For the second term in (5.6) it holds

K (Y n − µ)2 = Op(1/L) as L →∞. (5.7)

Therefore we concentrate only on the first part of (5.6), which we denote

σ̃2
LK =

1

KL

L−1∑

l=0

[
K∑

k=1

(
Y (Kl + k)− µ

)
]2

.

If we denote Dl = 1
K

[∑K
k=1(Y (Kl + k)− µ)

]2

, we can write the estimator σ̃2
LK as an

arithmetic mean of random variables Dl

σ̃2
LK =

1

L

L−1∑

l=0

Dl.

For the moments of σ̃2
LK we have then

Eσ̃2
LK =

1

L

L−1∑

l=0

EDl, (5.8)

E(σ̃2
LK)2 =

1

L2
E

( L−1∑

l=0

Dl

)2

. (5.9)

The following lemma assesses moments of random variables Dl.

Lemma 5.1.2. For any l, l′ = 0, 1, . . . , L− 1, l 6= l′ and K →∞, it holds

EDl = σ2 + O(1/K) + O(rK
o ), (5.10)

ED2
l = O(1), (5.11)

cov(Dl, Dl′) = O(r
K |l−l′−1|
0 ). (5.12)
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Proof. We start with relation (5.10).

EDl =
1

K

(
Kρ(0) + 2 (K − 1)ρ(1) + . . . + 2 ρ(K − 1)

)
=

=

(
ρ(0) + 2

K−1∑
i=1

ρ(i)

)
− 2

K

K−1∑
i=1

iρ(i) = σ2 + O(rK
o ) + O(1/K),

where the last relation is a consequence of convergency of the series
∞∑
i=1

i ρ(i) with ρ(i) =

ri
0, 0 < r0 < 1.

The proof of relation (5.11) is trivial and follows from Corollary A.4.6 (see Appendix), as

ED2
l =

1

K2
E

(
K∑

k=1

(Y (Kl + k)− µ)

)4

= O(1).

We show the proof of relation (5.12) for l′ = l+1. The general case l′ 6= l, l′ = 0, 1, . . . , L−1
is then proved similarly. We denote summands of a covariance cov(Dl, Dl+1) by

Si,j,p,q = EY (i)Y (j)Y (p)Y (q)− (
EY (i)Y (j)

)(
EY (p)Y (q)

)
, i, j = 1, . . . , K,

p, q = K + 1, . . . , 2K.

According to Corollary A.4.5 (see Appendix) we obtain

Si,j,p,q ≤ M α(p− j) = O(r
|p−j|
0 ), i, j = 1, . . . , K,

p, q = K + 1, . . . , 2K. (5.13)

The idea is to count the number of summands with the mixing coefficient α(1), the num-
ber of summands with the mixing coefficient α(2), etc. Therefore we first sort all the
K4 summands Si,j,p,q, i, j = 1 . . . , K, p, q = K + 1 . . . , 2K into a table of K2 × K2

elements and show characteristics of this layout for the index structure.

We create a table containing K2 rows denoted by pair indexes (i, j), 1 ≤ i ≤ K, 1 ≤
j ≤ K, i ≤ j. The inequality i ≤ j is important for the layout, therefore we, for example,
transpose the pair (2, 1) to the pair (1, 2). This way we obtain a sequence of indicated
rows:

{(1, 1), (1, 2), . . . , (1, K), (1, 2), (2, 2), . . . , (2, K), . . . , (1, K), (2, K), . . . , (K,K)}. (5.14)

Similarly, K2 columns we denote by pair indexes (p, q), K + 1 ≤ p ≤ 2K, K + 1 ≤ q ≤
2K, p ≤ q creating a sequence (with a respect to the layout defined by the inequality
p ≤ q)

{(K + 1, K + 1), (K + 1, K + 2), . . . , (K + 1, 2K), . . . ,

. . . , (K + 1, 2K), (K + 2, 2K), . . . , (2K, 2K)}. (5.15)
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In the sequence of indicated rows (5.14) we have

(2K − 1) indexes of a type (i,K), for i = 1, . . . , K,

(2K − 3) indexes of a type (i,K − 1), for i = 1, . . . , K − 1,

...

1 index of a type (1, 1)

and similarly for the sequence of indicated columns (5.15) we get

(2K − 1) indexes of a type (K + 1, q), q = K + 1, . . . , 2K,

(2K − 3) indexes of a type (K + 2, q), q = K + 2, . . . , 2K,

...

1 index of a type (2K, 2K).

Now we are ready to sort and count the summands Si,j,p,q according to their mixing
coefficients. Applying (5.13), we get that certain combinations of rows (i, j) and columns
(p, q) result in different summands Si,j,p,q corresponding to the mixing coefficients α(p−j).
For example, summands corresponding to the mixing coefficient

α(1) are of the type Si,K,K+1,q,

α(2) are of the type Si,K,K+2,q, Si,K−1,K+1,q,

α(3) are of the type Si,K,K+3,q, Si,K−1,K+2,q, Si,K−2,K+1,q,

...

α(2K − 2) are of the type S1,2,2K,2K , S1,1,2K−1,2K ,

α(2K − 1) are of the type S1,1,2K,2K .

Using the numbers of rows and the numbers of columns, we get
(2K − 1) (2K − 1) summands Si,K,K+1,q, i = 1, . . . , K, q = K + 1, . . . , 2K with a mixing
coefficient α(1),
(2K − 1) (2K − 3) summands Si,K,K+2,q, i = 1, . . . , K, q = K + 2, . . . , 2K with a mixing
coefficient α(2),
(2K − 1) (2K − 5) summands Si,K,K+3,q, i = 1, . . . , K, q = K + 3, . . . , 2K with a mixing
coefficient α(3),
...
(2K − 1) 1 summands Si,K,2K,2K , i = 1, . . . , K with a mixing coefficient α(K).

Similarly,

(2K − 3) (2K − 1) summands Si,K−1,K+1,q, i = 1, . . . , K − 1, q = K + 1, . . . , 2K with
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a mixing coefficient α(2),
(2K − 3) (2K − 3)summands Si,K−1,K+2,q, i = 1, . . . , K − 1, q = K + 2, . . . , 2K with a
mixing coefficient α(3),
(2K − 3) (2K − 5) summands Si,K−1,K+3,q, i = 1, . . . , K − 1, q = K + 3, . . . , 2K with a
mixing coefficient α(4),
...
(2K − 3) 1 summands Si,K−1,2K,2K , i = 1, . . . , K − 1 with a mixing coefficient α(K + 1).

And finally

(2K − 1) summands S1,1,K+1,q, q = K + 1, . . . , 2K with a mixing coefficient α(K),
(2K − 3) summands S1,1,K+2,q, q = K + 2, . . . , 2K with a mixing coefficient α(K + 1),
(2K − 5) summands S1,1,K+3,q, q = K + 3, . . . , 2K with a mixing coefficient α(K + 2),
...
1 summand S1,1,2K,2K , with a mixing coefficient α(2K − 1).

For the sum of all these elements we obtain using (5.13) for l = 0, . . . , L− 2

cov(Dl, Dl+1) ≤ 1

K2

2K−1∑
i=1

i∑
j=1

[2K − (2j − 1)] {2K − [2i− (2j − 1)]}M α(i)

≤ 1

K2

2K−1∑
i=1

i∑
j=1

[2K − (2j − 1)] {2K − [2i− (2j − 1)]}M ri
0

≤ 1

K2
M 4 K2

∞∑
i=1

i ri
0 = O(1),

which is a consequence of convergency of the series
∞∑
i=1

i ri
0 with 0 < r0 < 1.

The previous procedure can be generalized for l, t such that 0 ≤ l ≤ L−1, 0 ≤ l+t ≤ L−1,
then

cov(Dl, Dl+t) ≤

≤ 1

K2

2K−1∑
i=1

i∑
j=1

[2K − (2j − 1)] {2K − [2i− (2j − 1)]}M α(i + (t− 1)K)

≤ 1

K2

2K−1∑
i=1

i∑
j=1

[2K − (2j − 1)] {2K − [2i− (2j − 1)]}M r
i+(t−1)K
0

≤ 1

K2
M 4 K2 r

(t−1)K
0

∞∑
i=1

i ri
0 = O

(
r
(t−1)K
0

)
,

which is the assertion (5.12).
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Corollary 5.1.3. For K, L such that L → ∞, K = K(L) → ∞, n = n(L) = KL,
K/L = O(1), it holds

E(σ̂2
LK) = σ2 + O (1/ min(K,L)) , (5.16)

E(σ̂2
LK)2 = O(1/L). (5.17)

Proof. Relation (5.16) follows immediately from (5.6), (5.7), (5.8), (5.10), as

E(σ̂2
LK) = σ2 + O

(
1/K + 1/L + rK

o

)
= σ2 + O (1/ min(K, L)) .

For E(σ̂2
LK)2 we have for L →∞ according to (5.6), (5.7), (5.9), (5.11), (5.12):

E(σ̃2
LK)2 =

1

L2

L−1∑

l=0

(
E(Dl)

2 + 2
L−1∑

l′>l

cov(Dl, Dl′)

)

=
1

L2
O

(
L + 2

[
L + (L− 1)r1 K

0 + (L− 2)r2 K
0 + . . . + r

(L−1) K
0

] )

= O(
1

L
).

Theorem 5.1.4. For any K, L such that L → ∞, K = K(L) → ∞, n = n(L) = KL,

K/L = O(1), K = O((log n)γ) for some γ > 0 satisfying (log log n)2

min(K,L)
→ 0, it holds

σ̂2
LK − σ2 = op((log log n)−1).

Proof. We have according to the Markov inequality and Corollary 5.1.3

P

(
log log n

(
σ̂2

LK − σ2
) ≥ ε

)
≤ (log log n)2

ε2
E

(
σ̂2

LK − σ2
)2

≤ (log log n)2

ε2
2
[
E

(
σ̂2

LK − Eσ̂2
LK

)2
+ [Eσ̂2

LK − σ2]2
]

≤ (log log n)2

ε2

[
O

(
1

min(K,L)

)
+ O

(
1

L2

)]

=
(log log n)2

ε2

[
O

(
1

min(K,L)

)]
.

According to our assumption, minimum min(K, L) fulfills (log log n)2

min(K,L)
→ 0 as L →∞, K =

K(L) →∞ and we obtain the assertion of Theorem 5.1.4.

In the following theorem we show that the block permutation method gives asymptotically
correct critical values, i.e we prove that the quantiles of the permutation statistic TL,K(Y )
conditioned on the observations Y (·) approximate the correct critical values as the number
of observations tends to infinity. This is true not only when the observations follow the
null hypothesis but even when they follow the alternative hypothesis.
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Theorem 5.1.5. {X(i), i = 0, 1, 2, . . . , n}, {X(1)(i), i = 0, 1, 2, . . . , n}, {X(2)(i), i =

0, 1, 2, . . . , n} fulfill the assumptions (5.1), (5.2). Let 0 < δ̃ < (ν − 4)/2. Under the
alternative let either

(i) K(2+eδ)/2|d|2+eδ min(m∗
n

, n−m∗
n

) = O(1) and d2 K
L

= o(1) or

(ii) min(m∗
n

, n−m∗
n

) ≥ ε > 0.

Let A(x), D(x) be as in Theorem A.5.1. If K = O((log n)γ) for some γ > 0 and K/L =
O(1) then for all t ∈ R as L →∞

lim
n→∞

P

(
A(log n)

TL,K(π, Y )

σ̂LK

−D(log n) ≤ t|Y (1), . . . , Y (n)

)
= exp(−2e−t) a.s.

Remark 5.1.6. The assumptions (i) and (ii) come from Theorem 3.1 in Kirch [20].

Proof. The idea of the proof is similar to Kirch’s proof of Theorem 3.1 in [20] for errors
forming a linear sequence, i.e. to apply asymptotics for the rank statistic, confer Ap-
pendix – Theorem A.5.1, with special scores (for (i) we choose an(i) := Y (i) and for (ii)
an(i) := Y (i)/

√
d2K). In a first step we prove that the assumptions (A.13), (A.14) are

fulfilled for the error sequence {e(i)} = {Y (i)} − µ, in a second step we conclude that
they are also fulfilled a.s. for {Y (i)}.

We start with the error sequence {e(i)} = {Y (i)} − µ and prove (A.13).
We denote l∗ = dm∗/Ke (m∗ 6= n), where dxe denotes the integer part of x. Then for
the block where the change occurs it holds

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(Kl∗ + j)

∣∣∣∣∣

4

=

(
max

k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(Kl∗ + j)

∣∣∣∣∣

)4

≤ 8

{(
max

k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(1)(Kl∗ + j)

∣∣∣∣∣

)4

+

(
max

k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(2)(Kl∗ + j)

∣∣∣∣∣

)4 }
,

which is a consequence of inequality (a + b)4 ≤ 8(a4 + b4). This gives

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(Kl + j)

∣∣∣∣∣

4

≤ 8

{
1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(1)(Kl + j)

∣∣∣∣∣

4

+
1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(2)(Kl + j)

∣∣∣∣∣

4 }
. (5.18)



5. Block permutation 90

Sequences { 1
K

∑K
k=1 e(1)(Kl +k), l ≥ 0}, { 1

K

∑K
k=1 e(2)(Kl +k), l ≥ 0} satisfy assumptions

of Theorem A.4.7, confer Appendix, as these sequences remain stationary and their mixing
coefficient are smaller than the one of {e(1)(i), i = 1, . . . , n}, resp. {e(2)(i), i = 1, . . . , n}
for all K, therefore applying strong law of large numbers we obtain

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(1)(Kl + j)

∣∣∣∣∣

4

≤ D
(1)
1 a.s.,

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(2)(Kl + j)

∣∣∣∣∣

4

≤ D
(2)
1 a.s.

Substituting these inequalities into (5.18) we obtain

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(Kl + j)

∣∣∣∣∣

4

< D1 (5.19)

which gives (A.13) for the error sequence {e(·)}.

Concerning assumption (A.14) for the error sequence {e(·)} we have following inequalities:

1

L

L−1∑

l=0

(
1√
K

K∑
j=1

e(Kl + j)

)2

≥ 1

L

{ l∗−1∑

l=0

(
1√
K

K∑
j=1

e(1)(Kl + j)

)2

+
L−1∑

l=l∗+1

(
1√
K

K∑
j=1

e(2)(Kl + j)

)2 }

=
l∗

L

1

l∗

l∗−1∑

l=0

(
1√
K

K∑
j=1

e(1)(Kl + j)

)2

+
L− l∗ − 1

L

1

L− l∗ − 1

L−1∑

l=l∗+1

(
1√
K

K∑
j=1

e(2)(Kl + j)

)2

≥ max

{
l∗

L

1

l∗

l∗−1∑

l=0

(
1√
K

K∑
j=1

e(1)(Kl + j)

)2

;

L− l∗ − 1

L

1

L− l∗ − 1

L−1∑

l=l∗+1

(
1√
K

K∑
j=1

e(2)(Kl + j)

)2 }
.

Expressions 1
l∗

∑l∗−1
l=0

(
1√
K

∑K
j=1 e(1)(Kl + j)

)2

and
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1
L−l∗−1

∑L−1
l=l∗+1

(
1√
K

∑K
j=1 e(2)(Kl + j)

)2

are positive, since for t = 1, 2 and any q ∈ N

1

q

q−1∑

l=0

(
1√
K

K∑
j=1

e(t)(Kl + j)

)2

= Var(
1√
K

K∑
j=1

e(t)(j))

+
1

q

q−1∑

l=0

[(
1√
K

K∑
j=1

e(t)(Kl + j)

)2

− Var(
1√
K

K∑
j=1

e(t)(j))

]
−→ C > 0 a.s.,

where we either use results of Theorem 5.1.4 (K →∞) or the fact that Var( 1√
K

∑K
j=1 e(t)(j))

≥ c > 0, if K is bounded. It is obvious that both limits l∗
L
→ 0 and L−l∗−1

L
→ 0 can not

converge simultaneously, therefore

max

{
l∗ + 1

L

1

l∗ + 1

l∗∑

l=0

(
1√
K

K∑
j=1

e(1)(Kl + j)

)2

;

L− l∗ − 1

L

1

L− l∗ − 1

L−1∑

l=l∗

(
1√
K

K∑
j=1

e(2)(Kl + j)

)2 }
≥ D2

and the error sequence {e(·)} fulfills

1

L

L−1∑

l=0

(
1√
K

K∑
j=1

e(Kl + j)

)2

≥ D2, (5.20)

which is the assumption (A.14).

Before we start with verification of assumptions (A.13), (A.14) almost surely for {Y (·)},
we present some strong laws of large numbers for strong-mixing processes {e(·)}, confer
Kirch [20] and Appendix A.4. According to Theorem A.4.7 it holds as L →∞

1

n

∣∣∣∣∣
n∑

j=1

e(j)

∣∣∣∣∣ = O

(√
log n

n

)
a.s. (5.21)

To prove (A.13) under alternative we denote l∗ := dm∗/Ke and derive following laws of
large number

1

K

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣ = O

(√
log K

K

)
, a.s. (5.22)

as K →∞. From Markov inequality

P

(
1√
L

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣ ≥ ε

)
≤ Kν

εν
L−ν/2E|e(0)|ν

Because
∑∞

L=1 L−ν/2 < ∞ with ν > 4, it holds as L →∞

1√
L

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣ = O

(√
log K

)
a.s. (5.23)
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for K →∞ as well as K bounded. Similarly we deduce

1√
L(n−m∗)

∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣ = o(1) a.s. (5.24)

Now we are ready to verify the assumptions (A.13), (A.14) almost surely for

Y (i) = µ1 + e(1)(i), i = 1, . . . ,m∗,

= µ1 + d + e(2)(i), i = m∗ + 1, . . . , n.

First we consider the alternative (i) and choose the scores an(i) := Y (i). Without loss
of generality we can assume the µ1 = 0. We begin with the assumption (A.14). We can
write

1

L

L−1∑

l=0

(
1√
K

K∑

k=1

(Y (Kl + k)− Y n)

)2

=
1

K L

L−1∑

l=0

(
K∑

k=1

(Y (Kl + k)

)2

−K Y
2

n. (5.25)

Using equation (5.21) for e(1) = 1
m∗

∑m∗
i=1 e(1)(i) and e(2) = 1

n−m∗
∑n

i=m∗+1 e(2)(i) in Y n =

d n−m∗
n

+ m∗
n

e(1) + n−m∗
n

e(2) we obtain

K Y
2

n = K d2

(
n−m∗

n

)2

+ K

(
m∗

n

)2

e(1)
2
+ K

(
n−m∗

n

)2

e(2)
2

+2
√

K d
(n−m∗) m∗

n2

√
K e(1) + 2

√
K d

(
n−m∗

n

)2√
K e(2)

+2
(n−m∗) m∗

n2

√
K e(1)

√
K e(2)

= K d2

(
n−m∗

n

)2

+ o

((
n−m∗

n

)2
)

+ o

(
(n−m∗) m∗

n2

)
+ o

(
(
m∗

n
)2

)

+o

(√
K d

(n−m∗) m∗

n2

)
+ o

(√
K d

(
n−m∗

n

)2
)

+ o(1) a.s. (5.26)

and for the first term on the right of equation (5.25) we have as L →∞

1

K L

L−1∑

l=0

(
K∑

k=1

(d 1{Kl+k>m∗} + e(Kl + k))

)2

=
1

K L

L−1∑

l=0

(
K∑

k=1

e(Kl + k)

)2

+
1

K L

L−1∑

l=0

(
K∑

k=1

d 1{Kl+k>m∗}

)2

+
2

K L

L−1∑

l=0

(
K∑

k=1

d 1{Kl+k>m∗}

)(
K∑

k=1

e(Kl + k)

)

=
1

K L

L−1∑

l=0

(
K∑

k=1

e(Kl + k)

)2

+ Kd2n−m∗

n
+ o

(√
|d|2K n−m∗

n

)
+ o(1) a.s.,

(5.27)
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as from the assumption d2 K
L

= o(1) we get for 1
K L

∑L−1
l=0

(∑K
k=1 d 1{Kl+k>m∗}

)2

1

K L

L−1∑

l=0

(
K∑

k=1

d 1{Kl+k>m∗}

)2

= Kd2n−m∗

n
+ o(1) a.s.

and equations (5.23), (5.24) imply for

2

K L

L−1∑

l=0

(
K∑

j=1

d 1{Kl+j>m∗}

)(
K∑

k=1

e(Kl + k)

)

≤ |d|K 1

n

∣∣∣∣∣
n∑

j=Kl∗+1

e(1)(j)

∣∣∣∣∣ + |d|K 1

n

∣∣∣∣∣
n∑

j=Kl∗+1

e(2)(j)

∣∣∣∣∣

+ K |d| 1
n

∣∣∣∣∣
K∑

k=1

e(1)(Kl∗ + k)

∣∣∣∣∣ + K |d| 1
n

∣∣∣∣∣
K∑

k=1

e(2)(Kl∗ + k)

∣∣∣∣∣

≤ |d|
√

K
n−m∗

n

1√
L(n−m∗)

∣∣∣∣∣
n∑

j=Kl∗+1

e(1)(j)

∣∣∣∣∣

+ |d|
√

K
n−m∗

n

1√
L(n−m∗)

∣∣∣∣∣
n∑

j=Kl∗+1

e(2)(j)

∣∣∣∣∣

+
√

K |d|min

(
n−m∗

n
,
m∗

n

) 1
2+δ̃ 1

n
δ̃

2(2+δ̃)

1√
L

∣∣∣∣∣
K∑

k=1

e(1)(Kl∗ + k)

∣∣∣∣∣

+
√

K |d|min

(
n−m∗

n
,
m∗

n

) 1
2+δ̃ 1

n
δ̃

2(2+δ̃)

1√
L

∣∣∣∣∣
K∑

k=1

e(2)(Kl∗ + k)

∣∣∣∣∣

= o

(√
|d|2 K

n−m∗

n

)
+ o(1) a.s.

Results (5.26), (5.27) and the result (5.20) for the error sequence {e(·)} imply for L →∞

1

L

L−1∑

l=0

(
1√
K

K∑

k=1

(Y (Kl + k)− Y n)

)2

= D2 + K d2m∗

n
−K d2

(
m∗

n

)2

+ o

(√
|d|2 K

m∗

n

)
+ o(1)

= D2 + K d2 (n−m∗) m∗

n2
+ o

(√
|d|2 K

n−m∗

n

)
+ o(1) a.s.

Instead of representation {Y (i) = µ1 + d 1{i>m∗} + e(1)(i) 1{i≤m∗} + e(2)(i) 1{i>m∗}, i =
1, . . . , n}, we can write

{Y (i) = (µ1 + d)− d 1{i>m∗} + e(1)(i) 1{i≤m∗} + e(2)(i) 1{i>m∗}, i = 1, . . . , n}
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and an analogous calculation gives

1

L

L−1∑

l=0

(
1√
K

K∑

k=1

(Y (Kl + k)− Y n)

)2

= D2 + K d2 (n−m∗) m∗

n2
+ o

(√
|d|2 K

m∗

n

)
+ o(1) a.s.

and putting these two results together gives for L →∞

1

L

L−1∑

l=0

(
1√
K

K∑

k=1

(Y (Kl + k)− Y n)

)2

= D2 + K d2 (n−m∗) m∗

n2
+ o

(√
|d|2 K min

(
m∗

n
,
n−m∗

n

))
+ o(1)

≥ D2 + o(1) a.s.,

which is (A.14) for {Y (·)}.

Now we prove that (A.13) holds almost surely for {Y (·)}. Using equations (5.19) and
(5.22) we get

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

(
Y (Kl + j)− Yn

)
∣∣∣∣∣

4

≤ 1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(Kl + j)

∣∣∣∣∣

4

+

(
m∗

n

)4

|
√

K e(1)|4

+

(
n−m∗

n

)4

|
√

K e(2)|4 + K2 d4

(
n−m∗

n

)4

+ K2 d4 n−m∗

n

≤ D + K2 d4 n−m∗

n
a.s.

As above we get using the representation {Y (i) = (µ1 + d)− d 1{i>m∗} + e(1)(i) 1{i≤m∗} +
e(2)(i) 1{i>m∗}

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

Y (Kl + j)− Yn

∣∣∣∣∣

4

≤ D + K2 d4 m∗

n
a.s.,

which gives

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

Y (Kl + j)− Yn

∣∣∣∣∣

4

≤ D + K2 d4 min

(
n−m∗

n
,
m∗

n

)

≤ D1 a.s.
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For the proof of the alternative (ii) we distinguish two main cases K d2
n = O(1) and

1
K d2

n
= O(1). The first one is included in (i), so let us assume that 1

K d2 = O(1). We

choose the scores an(i) := Y (i)/
√

d2 K. Without loss of generality assume again µ1 = 0.
Similarly as in the case (i) we have

1

L

L−1∑

l=0

(
1

|d|K
K∑

k=1

(Y (Kl + k)− Y n)

)2

=
1

d2 K2 L

L−1∑

l=0

(
K∑

k=1

(Y (Kl + k)

)2

− 1

d2
Y

2

n.

Using equation (5.21) for e(1) = 1
m∗

∑m∗
i=1 e(1)(i) and e(2) = 1

n−m∗
∑n

i=m∗+1 e(2)(i) in Y n =

d n−m∗
n

+ m∗
n

e(1) + n−m∗
n

e(2) we obtain

1

d2
Yn

2
=

(
n−m∗

n

)2

+
1

d2

(
m∗

n

)2

e(1)
2
+

1

d2

(
n−m∗

n

)2

e(2)
2

+
2

d
√

K

(n−m∗)m∗

n2

√
K e(1) +

2

d
√

K

(
(n−m∗)

n

)2√
K e(2)

+
2

d2 K

(n−m∗)m∗

n2

√
K e(1)

√
K e(2)

=

(
n−m∗

n

)2

+ o(1) a.s.

Furthermore equation (5.21) yields as L →∞

1

d2 K2 L

L−1∑

l=0

(
K∑

k=1

(d 1{Kl+k>m∗} + e(Kl + k))

)2

≥ 1

d2 K2 L

L−1∑

l=0

(
K∑

k=1

d 1{Kl+k>m∗}

)2

+
2

d2 K2 L

L−1∑

l=0

(
K∑

j=1

d 1{Kl+j>m∗}

)(
K∑

k=1

e(Kl + k)

)

=
n−m∗

n
+ o(1) a.s.,

since

1

d2 K2 L

L−1∑

l=0

(
K∑

k=1

d 1{Kl+k>m∗}

)2

=
1

K2 L
K2n−m∗

K
+ o(1)
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and

2

d2K2L

L−1∑

l=0

(
K∑

j=1

d 1{Kl+j>m∗}

)(
K∑

k=1

e(Kl + k)

)

≤ 1√
K |d|

√
K

1

n

∣∣∣∣∣
K∑

k=1

e(1)(Kl∗ + k)

∣∣∣∣∣ +
1√

K |d|
√

K
1

n

∣∣∣∣∣
n∑

j=Kl∗+1

e(1)(j)

∣∣∣∣∣

+
1√

K |d|
√

K
1

n

∣∣∣∣∣
K∑

k=1

e(2)(Kl∗ + k)

∣∣∣∣∣ +
1√

K |d|
√

K
1

n

∣∣∣∣∣
n∑

j=Kl∗+1

e(2)(j)

∣∣∣∣∣ → 0 a.s.,

using equations (5.23), (5.24) and assumption 1
K d2 = O(1). Putting everything together,

we have as L →∞
1

L

L−1∑

l=0

(
1

|d|K
K∑

k=1

(Y (Kl + k)− Y n)

)2

≥
(

n−m∗

n

)
−

(
n−m∗

n

)2

+ o(1) a.s.

≥
(

n−m∗

n

) (
m∗

n

)
+ o(1) a.s.

≥ min

((
n−m∗

n

)2

,

(
m∗

n

)2
)

+ o(1) a.s.

≥ ε2 + o(1) a.s.,

which is again the assumption (A.14).

Concerning (A.13), we have using equations (5.21) and (5.19)

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1

|d|K
K∑

j=k+1

Y (Kl + j)− Yn

∣∣∣∣∣

4

≤ 1

d4 K2

1

L

L−1∑

l=0

max
k=0,...,K−1

∣∣∣∣∣
1√
K

K∑

j=k+1

e(Kl + j)

∣∣∣∣∣

4

+
1

d4 K2
|
√

K e(1)|4 +
1

d4 K2
|
√

K e(2)|4 +

(
n−m∗

n

)4

+
n−m∗

n

≤ D1 a.s.

In the case, where d = dn follows neither of the above possibilities, we have infinitely
many n with Kn d2

n ≤ 1 and also infinitely many with Kn d2
n > 1. Then we choose the

scores

an(i) =

{
X(i) Kn d2

n ≤ 1,

X(i)/
√

K d2 Kn d2
n > 1.

As above, the assumptions of Theorem A.5.1 are fulfilled for both sequences, hence also
for the complete sequence.
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5.2 Application

We applied the permutation principle to the occurrences of unusually hot or cold days.
For the details concerning our data we refer to Chapter 2, Figures 17–33 and the applica-
tion part of Chapter 4, where we described the obtained time series of indicators signaling
an event that the standardized value exceeds a certain level. As we mentioned earlier, we
can not assume that our real data form independent series, see Figure 33, but the block
permutation principle provides a technique for studying changes also for strong -mixing
sequences.

We tried several lengths of the block K = 5, 10, 20, 30 giving almost similar results.
Tables 16 and 17 present our results for the length of the block K = 5. We hope that
K = 5 is big enough to capture the dependence. According to Section 5.1, we divided the
series into blocks of length K = 5, permuted the blocks randomly 10 000 times and for
every permutation the value of TL,5(t) was calculated. Then the (1 − α) 100% empirical
quantile of all TL,5(t) served as α 100% critical value. The values of the test statistics
TL,5(t) together with the approximate critical values obtained by permutation principle
for exceedances over level 2.5 can be found in Table 17. Table 18 presents the same for
the exceedances under level -2.5.

TL,5(t) 5% crit.v.

Brussels over 2.5 15.24 5.66
Cadiz over 2.5 7.55 5.54
Milan over 2.5 7.33 6.15
Padua over 2.5 3.17 6.17
St.Petersburg over 2.5 5.98 5.67
Stockholm over 2.5 4.89 5.54
Uppsala over 2.5 3.95 5.79
Prague over 2.5 8.75 5.76

Table 17. Values of TL,5(t) together with the corresponding approximate critical values
obtained by permutation principle.
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TL,5(t) 5% crit.v.

Brussels under -2.5 5.34 5.92
Cadiz under -2.5 3.91 5.49
Milan under -2.5 4.24 5.38
Padua under -2.5 9.03 5.53
St.Petersburg under -2.5 8.57 5.59
Stockholm under -2.5 10.74 5.47
Uppsala under -2.5 8.97 5.31
Prague under -2.5 6.69 5.91

Table 18. Values of TL,5(t) together with the corresponding approximate critical values
obtained by permutation principle.

In the case of unusually hot days we reject the null hypothesis for Brussels, Cadiz, Milan,
St. Petersburg and Prague series, while in the case of unusually cold days we reject the
null hypothesis for Padua, Uppsala, Stockholm St. Petersburg and Prague series.

5.3 Comparison

If we compare the results obtained from the asymptotic theory with the results from
the block permutation tests, see Tables 19 and 20, at the 5% significance level the test
statistics Tn(t) and TL,5 rejected the null hypothesis H0 in almost the same cases – red
numbers denote significant values. The only difference is in occurrences of unusually hot
days for Stockholm series.

Tn(t) TL,5(t)

Brussels over 2.5 11.26 15.24
Cadiz over 2.5 5.97 7.55
Milan over 2.5 6.12 7.33
Padua over 2.5 2.67 3.17
St.Petersburg over 2.5 4.53 5.98
Stockholm over 2.5 3.85 4.89
Uppsala over 2.5 3.04 3.95
Prague over 2.5 6.82 8.75

Table 19. Results – statistics Tn(t), TL,5(t), red numbers denote significant values.
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Tn(t) TL,5(t)

Brussels under -2.5 3.75 5.34
Cadiz under -2.5 3.10 3.91
Milan under -2.5 3.19 4.24
Padua under -2.5 6.20 9.03
St.Petersburg under -2.5 6.16 8.57
Stockholm under -2.5 7.40 10.74
Uppsala under -2.5 6.30 8.97
Prague under -2.5 4.39 6.69

Table 20. Results – statistics Tn(t), TL,5(t), red numbers denote significant values.

5.4 Results

In the second part of this thesis we studied one phenomena of weather behavior – oc-
currences of unusually hot, resp. cold days. We were working with long temperature
series, the temperature values measured at subsequent days were strongly correlated, the
correlation coefficients were for all series very close to 0.8. We defined the problem by a
model working with data forming strong-mixing processes and in the fourth chapter we
showed that the asymptotic distribution of the testing statistic Tn(t) is valid not only for
linear processes but for strong-mixing sequences as well. In the fifth chapter we examined
the behavior of the block permutation statistic TL,K and again the theory was generalized
from linear processes to strong-mixing sequences.

We applied these two methods for the standardized data describing the exceedance over
high, resp. low level characterizing an appearance of unusually warm, resp. cold day,
for more details confer Section 4.2. We showed that both methods give similar results,
rejecting the null hypothesis for the same observatories.

When analyzing the exceedances over the level 2.5, the tests confirm a clear increase
in the Brussels, Cadiz, Milan, St. Petersburg and Prague series with frequencies of these
occurrences three times higher in the second part than before the estimated change, while
the increase in Padua and Uppsala occurrences of unusually hot days was not significant.

For the exceedances under the level -2.5, the tests confirm a clear decrease in the Uppsala,
Padua, St. Petersburg and Stockholm series with frequencies about three times smaller in
the second part than before the estimated change, while the decrease in Brussels, Cadiz
and Milan occurrences of unusually cold days was not significant.

The advantage of the asymptotic method is that it provides the estimated change-point
as well. We might notice two characteristic periods in the estimated date of change – the
end of 19th century the end of 20th century.
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Although our results might suggest confirmation of the hypothesis that the increased
mean of temperature observed since the end of 19th century and a decreasing variability
of temperature series is related to the fact that extremely cold days appear less frequent
and extremal high temperatures become more frequent, we have to admit several problems
which might have influenced our results:

• the number of data. Although we were working with long temperature series, in
fact only about 200, resp. 800 observations satisfy our definition of unusually hot,
resp. cold day.

• a disproportion between the numbers of unusually hot and cold days is caused by a
distinctive negative skewness of minimal temperatures, see Tables 3 and 4.

• heat island effect causing milder winters in city centers.

We hope that in the future the proposed change-point methods should be applied to the
series that are not affected by the heat island effect, that are divided into a summer and
winter periods and a climatologic definition of an unusually hot, resp. cold day should be
taken into account as a day whose maximum, resp. minimum temperature is within the
lowest 5th centile of the daily temperature series for each observatory and this way we
obtain more reasonable results.
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Appendix A

Some useful theorems and
inequalities

A.1 The test statistic for a change-point detection

For detecting change(s) in the behavior of a series, change-point methods may be ap-
plied, especially the methods based on the log – likelihood ratio became very popular.
The general theory was presented in Csörgő and Horváth [7] (pages 1 – 34).

Let X1, X2, . . . , Xn be a sequence of independent random variables with the distribution
functions F (x; ϕ1), . . . , F (x; ϕn), respectively, where ϕi are parameters of the distribution
functions such that ϕi ∈ Φ ⊆ Rd for i = 1, . . . , n.

We are interesting in testing the null hypothesis

H0 : ϕ1 = ϕ2 = . . . = ϕn

versus the alternative

HA : ϕ1 = . . . = ϕk 6= ϕk+1 = . . . = ϕn.

We have then a two-sample problem and we can apply the likelihood ratio test. The null
hypothesis will be rejected for large values of the test statistic

Λk =
sup(ϕ,τ)∈Φ×Φ

∏
1≤i≤k f(Xi; ϕ)

∏
k<i≤n f(Xi; τ)

sup(ϕ)∈Φ

∏
1≤i≤n f(Xi; ϕ)

.

We suppose now, that the time of change k is unknown. The null hypothesis and the
alternative have the form:

H0 : ϕ1 = ϕ2 = . . . = ϕn

HA : there exists k ∈ {0, . . . , n− 1} such that

ϕ1 = . . . = ϕk 6= ϕk+1 = . . . = ϕn,

where parameters ϕ1 = . . . = ϕk before the change as well as parameters ϕk+1 = . . . = ϕn

are unknown. The null hypothesis will be rejected for large values of the maximally
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selected likelihood ratio statistic

max
0≤k≤n−1

Λk = max
0≤k≤n−1

sup(ϕ,τ)∈Φ×Φ

∏
1≤i≤k f(Xi; ϕ)

∏
k<i≤n f(Xi; τ)

sup(ϕ)∈Φ

∏
1≤i≤n f(Xi; ϕ)

.

If we denote

Lk(ϕ) =
∑

1≤i≤k

log f(Xi; ϕ),

L∗k(ϕ) =
∑

k<i≤n

log f(Xi; ϕ)

and the true value of the parameters under H0 by ϕ0, then the logarithm of likelihood
ratio can be written as

log(Λk) = [Lk(ϕ̂k) + L∗k(ϕ̂
∗
k)− Ln(ϕ̂n)] ,

where ϕ̂n is the maximum likelihood estimator of parameter ϕ0 based on the observations
ϕ1, ϕ2, . . . , ϕn, ϕ̂k is the maximum likelihood estimator of parameter ϕ0 based on the first
k observations, resp. ϕ̂∗k is the maximum likelihood estimator of parameter ϕ0 based on
the last n− k observations.

We reject H0 for large values of the maximum-type statistic

max
0≤k≤n−1

(2 log(Λk)) . (A.1)

The asymptotic distribution of (max0≤k≤n−1 (2 log(Λk)))
1
2 is given by Csörgő and Horváth

theorem.

Theorem A.1.1. (Csörgő and Horváth theorem) Let X1,X2, . . . ,Xn are indepen-
dent random vectors in Rm with the distribution functions F (x; ϕ1), . . . , F (x; ϕn), where
ϕi ∈ Φ ⊂ Rd for all 1 ≤ i ≤ n. Let

g(x;y) = log f(x;y),

gi(x;y) =
∂

∂yi

g(x;y)

and

gi1,...,ir(x;y) =
∂rg(x;y)

∂yi1 . . . ∂yir

for all x ∈ Rm and y = (y1, . . . , yd) ∈ Φ. The true values of the parameters under H0 are
denoted by ϕ0.

We assume that
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C.1 X1,X2, . . . ,Xn have probability densities f(x; ϕ1), . . . , f(x; ϕn) with respect to ν,
where ν is a σ-finite measure on Rm

C.2 F (x; ϕ) generates distinct measures for ϕ ∈ Φ

C.3 For each k, 1 ≤ k ≤ n, we can find unique estimators ϕ̂k, ϕ̂
∗
k such that

k∑
j=1

gi(Xj; ϕ̂k) = 0, 1 ≤ i ≤ d,

n∑

j=k+1

gi(Xj; ϕ̂
∗
k) = 0, 1 ≤ i ≤ d

C.4 There is an open interval
Phi0 ⊆ Φ ⊆ Rd containing ϕ0 such that gi(x;y), gi,j(x;y) and gi,j,k(x;y), 1 ≤
i, j, k ≤ d, exist and are continuous in y, for all x ∈ Rm and y ∈ Φ0

C.5 There are functions M1(x) and M2(x) such that |gi(x;y)| ≤ M1(x), |gi,j(x;y)| ≤
M2(x) and |gi,j,k(x;y)| ≤ M2(x) for all x ∈ Rm and y ∈ Φ0 and 1 ≤ i, j, k ≤ d.
The functions M1 and M2 satisfy

∫

Rm

M1(x)ν(dx) < ∞

and
Eϕ0M2(X1) < ∞

C.6 Eygi(X1;y) = 0 for all 1 ≤ i ≤ d and y ∈ Φ0

C.7 Ji,j(y) = Eygi(X1;y)gj(X1;y) = −Eygi,j(X1;y), 1 ≤ i, j ≤ d, and J−1(y) exist
and are continuous for all y ∈ Φ0, where J(y) = {Ji,j(y), 1 ≤ i, j ≤ d} is the
information matrix

C.8 var(ϕ0)gi,j(X1; ϕ0) < ∞ for all 1 ≤ i, j ≤ d

C.9 E(ϕ0)|gi,j(X1; ϕ0)|µ < ∞ for all 1 ≤ i, j ≤ d with some µ > 2

Then if H0 and all the necessary regularity conditions C.1 - C.9 hold, we have

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1
2 log(Λk)

)1/2

≤ t + Dd log(n)

)
= exp(−2e−t)

for all t, where
A(x) =

√
2 log x

and
Dd(x) = 2 log x + (d/2) log log x− log Γ(d/2),

where Γ(t) is the gamma function defined

Γ(t) =

∫ ∞

0

yt−1 exp(−y)dy.
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Remark A.1.2. If we know the parameters ϕ1 = . . . = ϕk = ϕ0 before the change and
we do not know the parameters ϕk+1 = . . . = ϕn = ϕ after the change, the null hypothesis
and the alternative have the form:

H0 : ϕ1 = ϕ2 = . . . = ϕn = ϕ0

HA : there exists k ∈ {0, . . . , n− 1} such that

ϕ1 = . . . = ϕk = ϕ0,

ϕk+1 = . . . = ϕn = ϕ ,where ϕ 6= ϕ0.

Then the twice log–likelihood ratio has a form

max
0≤k≤n−1

(
2 log(Λ

(0)
k )

)
= max

0≤k≤n−1
2 [L∗k(ϕ̂

∗
k)− L∗k(ϕ0)] . (A.2)

The asymptotic distribution under H0 and the assumptions of Theorem A.1.1 of the statis-

tic max0≤k≤n−1

(
2 log(Λ

(0)
k )

)
is given by

lim
n→∞

P

(
A(log n)

(
max

0≤k≤n−1

(
2 log(Λ

(0)
k )

)1/2
)
≤ t + Dd log(n)

)
= exp(−e−t).
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A.2 The extreme value distributions

The extreme value distributions formally arise as limiting distributions for maxima or
minima of a sequence of random variables. We concentrate on maxima, as the results
for minima can be obtained by replacing random variables X1, X2, . . . , by their negatives
−X1,−X2, . . .

Suppose X1, X2, . . . are independent random variables with a common distribution func-
tion F. The distribution of the maximum Mn = max{X1, . . . , Xn} is

P{Mn ≤ x} = P{X1 ≤ x, . . . , Xn ≤ x} = F n(x).

We denote by
xF = sup{x ∈ R; F (x) < 1}

the right endpoint of F. We obtain for all x < xF ,

P{Mn ≤ x} = F n(x) → 0 as n →∞,

and, in the case xF < ∞, we have for x ≥ xF that

P{Mn ≤ x} = F n(x) = 1.

Thus Mn
P→ xF as n →∞. This fact does not provide a lot of information.

It turns out that we can get interesting results if we renormalize: define scaling con-
stants an > 0 and bn so that

P

{
Mn − bn

an

≤ x

}
= P {Mn ≤ anx + bn}

= F n(anx + bn) → H(x) as n →∞,

where H is nondegenerate distribution function.

There are only three types of limiting distribution and these are given by following theo-
rem, which is the basis of classical extreme value theory.

Theorem A.2.1. (Fisher – Tippet theorem) Let X1, X2, . . . be i.i.d. random vari-
ables. If there exist norming constants an > 0 and bn ∈ R and some non-degenerate
distribution function H such that

P

{
Mn − bn

an

≤ x

}
→ H,
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then H belongs to the type of one following three distribution functions:

Fréchet : Φα(x) = 0, for x ≤ 0

= exp{−x−α}, for x > 0, α > 0

Weibull : Ψα(x) = exp{−(−x)α}, for x ≤ 0 α > 0

= 1, for x > 0,

Gumbel : Λ(x) = exp{−e−x}, for x ∈ R.

The three types of extreme value distributions may be combined into a single family
known as the generalized extreme value distribution (abbreviated to GEV) given by

H(x; µ, ψ, ξ) = exp

{
−

(
1 + ξ

x− µ

ψ

)− 1
ξ

}
ψ > 0, µ ∈ R, ξ ∈ R (A.3)

defined on the region for which 1 + ξ(x− µ)/ψ > 0. In (A.3), µ is a location parameter,
ψ is a scale parameter and ξ is a shape parameter. The case ξ > 0 is the Fréchet type
with α = 1/ξ, the case ξ < 0 is the Weibull type with α = −1/ξ, while the case ξ = 0 is
the Gumbel distribution as a result from following limit

lim
ξ→0

H(x; µ, ψ, ξ) = exp

{
− exp

(
−x− µ

ψ

)}
.

For the GEV, the density h(x; µ, ψ, ξ) is obtained by differentiating (A.3) with a respect
to x

h(x; µ, ψ, ξ) =
1

ψ

(
1 + ξ

x− µ

ψ

)− 1
ξ
−1

exp

{
−

(
1 + ξ

x− µ

ψ

)− 1
ξ

}
, (A.4)

provided 1 + ξ(x − µ)/ψ > 0. Here are a few basic properties of the GEV distribution.
The mean exists if ξ < 1 and the variance if ξ < 1

2
; more generally the k’th moment exists

if ξ < 1
k
. The mean and the variance are given by

µ1 = E(X) = µ +
ψ

ξ
Γ(1− ξ)− 1, ξ < 1,

µ2 = E(X − µ1)
2 =

ψ2

ξ2
Γ(1− 2ξ)− Γ2(1− ξ), ξ <

1

2
,

where Γ(·) is the Gamma function. In the limiting case ξ → 0, these reduce to

µ1 = µ + ψγ, µ2 =
ψ2π2

6
,

where γ is Euler’s constant.
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A.3 Limit theorems

Theorem A.3.1. (Smith) In general we assume θ is real-valued and (α, β) ∈ Φ ⊆ R2.
Let (θ0, α0, β0) denote the true values of (θ, α, β). The maximum likelihood estimator,

when it exists, will be denoted by (θ̂, α̂, β̂). The probability density is of the form

f(x; θ, α, β) = (x− θ)α−1g(x− θ; α, β) (θ < x < ∞)

Assume conditions

E
( ∂

∂θ

(
log f(Xi; ϕ0)

))
= 0,

E
( ∂

∂α

(
log f(Xi; ϕ0)

))
= 0,

E
( ∂

∂β

(
log f(Xi; ϕ0)

))
= 0

and

mθθ = E{ ∂

∂θ
log(f(Xi; ϕ0))

∂

∂θ
log(f(Xi; ϕ0))}

= −E{ ∂2

∂θ2
log(f(Xi; ϕ0))},

mαα = E{ ∂

∂α
log(f(Xi; ϕ0))

∂

∂α
log(f(Xi; ϕ0))}

= −E{ ∂2

∂α2
log(f(Xi; ϕ0))},

mββ = E{ ∂

∂β
log(f(Xi; ϕ0))

∂

∂β
log(f(Xi; ϕ0))}

= −E{ ∂2

∂β2
log(f(Xi; ϕ0))},

mθα = mαθ = E{ ∂

∂θ
log(f(Xi; ϕ0))

∂

∂α
log(f(Xi; ϕ0))}

= −E{ ∂2

∂θ∂α
log(f(Xi; ϕ0))},

mθβ = mβθ = E{ ∂

∂θ
log(f(Xi; ϕ0))

∂

∂β
log(f(Xi; ϕ0))}

= −E{ ∂2

∂θ∂β
log(f(Xi; ϕ0))},

mαβ = mβα = E{ ∂

∂α
log(f(Xi; ϕ0))

∂

∂β
log(f(Xi; ϕ0))}

= −E{ ∂2

∂α∂β
log(f(Xi; ϕ0))}.

are satisfied, and moreover assume
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• All second order partial derivatives of g(x; θ, α, β) exist and are continuous in 0 <
x < ∞, (α, β) ∈ Φ. Moreover c(α, β) = α−1 limx→0 g(x; α, β) exists, is positive and
finite for each (α, β), and is twice continuously differentiable as a function of (α, β).

• If h(x; α, β) is any of ∂2

∂x∂α
log g(x; α, β), ∂2

∂x∂β
log g(x; α, β), ∂2

∂α2 log g(x; α, β),

∂2

∂α∂β
log g(x; α, β), ∂2

∂β2 log g(x; α, β). Then as θ → θ0, α → α0, β → β0,

E0|h(X − θ; α, β)− h(X − θ0; α0, β0)| → 0,

where E0 is expectation with respect to f(.; θ0, α0, β0). If α(α0, β0) > 2, we require
the same of x(x, α, β) = ∂2

∂x2 log g(x; α, β).

• For each ε > 0, δ > 0, there exists a function hε,δ such that

| ∂2

∂x2
log g(x; α, β)| < ε

x2
+ hε,δ(y, α0, β0)

whenever |α− α0| < δ, |β − β0| < δ, |x− y| < δ, and hε,δ satisfies
∫ ∞

0

hε,δ(x, α0, β0)f(x; 0, α0, β0) < ∞.

Suppose α > 1, M is strictly positive-definite. Then there exist a sequence (θ̂k, α̂k, β̂k) of
solutions to the likelihood equations such that

θ̂k − θ0 = Op(k
1
2 ) α̂k − α0 = Op(k

1
2 ) β̂k − β0 = Op(k

1
2 ).

Theorem A.3.2. (Marcinkiewicz – Zygmund law) Let X1, X2, . . . be i.i.d. Let 0 <
r < 2. Establish the equivalence

E|X|r < ∞ if and only if
1

n
1
r

n∑

k=1

(Xk − c) → 0 a.s. for some c.

If so, then c = EX when 1 ≤ r < 2, while c is arbitrary when 0 < r < 1.

Theorem A.3.3. (Law of the Iterated Logarithm) Let X1, X2, . . . be i.i.d. Consider
the partial sums Sn = X1 + · · ·+ Xn.
If EX = 0 and σ2 ≡ V ar|X| < ∞, then

lim sup
n→∞

Sn

σ
√

2 n log log n
= 1 a.s. while lim inf

n→∞
Sn

σ
√

2 n log n log n
= −1 a.s.

Theorem A.3.4. Let X, X1, X2, . . . be i.i.d. Then

E |X| < ∞ if and only if
1

n
max
1≤k≤n

|Xk| → 0 a.s.
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Lemma A.3.5. Let h be a continuously differentiable real-valued function of p+1 variables
and let H denote the gradient vector of h. Suppose that the scalar product of x and H(x)
is negative whenever |x| = 1. Then h has a local maximum, at which H = 0, for some
|x| < 1.
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A.4 Strong-mixing sequences

Definition A.4.1. Let
. . . , ξ−1, ξ0, ξ1, . . .

be a strictly stationary sequence of random variables defined on a probability space (Ω,B, P ).
For a ≤ b, define Mb

a as the σ-field generated by the random variables ξa, . . . , ξb; define
Ma

−∞ as the σ-field generated by the random variables . . . , ξa−1, ξa; and define M∞
a as the

σ-field generated by the random variables ξa, ξa+1, . . .. The sequence {ξn, n ∈ Z} is said to
satisfy strong-mixing condition if there exists a sequence of real numbers α(n) satisfying

lim
n→∞

α(n) = 0

such that
|P (A ∩B)− P (A)P (B)| ≤ α(n)

for all A ∈Mk
−∞ and B ∈M∞

k+n and all k, n ≥ 1.

Before we start with listing properties of strong-mixing sequences, we introduce conditions
for linear processes to be strong-mixing, see Withers [27].

Lemma A.4.2. Let Zj be independent random variables on R with characteristic func-
tions φj such that

K = (2π)−1 max
j

∫
|φj(t)|dt < ∞ (A.5)

and
γ = max

j
E|Zj|δ < ∞ for some δ > 0. (A.6)

Let gj be complex numbers such that

Gt = St(min(1, δ))max(1,δ) −→ 0 as t −→∞, (A.7)

where

St(δ) =
∞∑

ν=t

|gν |δ. (A.8)

Then for all t, Xnt =
∑n

j=0 gjZt−j converges in probability to a random variable Xt as
n →∞. Suppose

M0 = sup
m,s,k≥1

sup
α,β,ν

max
t

∣∣∣∣∣
∂

∂νt

P

(
W + ν ∈

s⋃
1

Dj

)∣∣∣∣∣ < ∞, (A.9)

where

Dj = Xk+m−1
t=k (αjt, βjt), ν = (νk, . . . , νk+m−1),

W = (Wk, . . . , Wk+m−1), Wt = Xt−1,t.

Then for Xt,

α(k) ≤ 2(4M0 + γ)α0(k), where α0(k) =
∞∑

t=k

Gt. (A.10)
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As an application, consider the general A.R.M.A. process, written as

p∏
j=1

(1− ρj U) Xt = fq(U) Zt,

where U xt = xt−1, fq(z) =
∑q

l=0 bl zl.

Corollary A.4.3. If the A.R.M.A. process Xt satisfies (A.5), (A.6), (A.9) and condition

r =
p

max
j=1

|ρj| < 1 (A.11)

then for all r0 > r, α(k) = O(rλ k
0 ) where λ = δ(1 + δ)−1.

Following lemmas summarize moment inequalities for strong-mixing processes.

Lemma A.4.4. Let ξ and η be two random variables measurable F and G respectively.
Let r, s, t ≥ 1 with r−1 + s−1 + t−1 = 1. If ||ξ||s < ∞ and ||η||t < ∞ then

|E{ξη} − E{ξ}E{η}| ≤ 10(ρ(FG))1/r||ξ||s||η||t.

Moreover, if ||ξ||∞ < ∞ and ||η||∞ < ∞ then

|E{ξη} − E{ξ}E{η}| ≤ 4ρ(FG)||ξ||∞||η||∞.

Here
ρ(F ,G) = sup |P (AB)− P (A)P (B)|

the supremum being extended over all A ∈ F and B ∈ G.

Corollary A.4.5. If ξ is measurable Mn
−∞ and ||ξ||∞ < ∞, and if η is measurable M∞

n+k

(k ≥ 0) and ||η||∞ < ∞ there exists a constant M , such as

|E{ξη} − E{ξ}E{η}| ≤ M α(k).

As a consequence of a previous corollary is also a following result dealing with the sums
of strong-mixing sequences.
Let ξn is stationary, bounded, strong-mixing sequence of random variables. Let

Sn = ξ1 + ξ2 + . . . + ξn

and S0 = 0.

Corollary A.4.6. If ξ0 is bounded by C and Eξ0 = 0, and if
∑

α(i) < ∞, then

ES4
n ≤ KαC4n2,

where Kα depends on α alone.

Proof. Can be found in [24].
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The following theorem gives moment inequalities for the maximum of partial sums as well
as a convergency rate in the strong law of large numbers, see Kirch [20] and Serfling [25].

Theorem A.4.7. Let {Y (i), i ∈ Z} be a strictly stationary sequence with EY (i) = 0,
i ∈ Z. Assume there are δ, ∆ > 0 with

E|Y (i)|2+δ+∆ ≤ D1 for all i ∈ Z
and there is a sequence α(k) with αγ(k) ≤ α(k), k ∈ N, and

∞∑

k=0

(k + 1)δ/2α(k)∆/(2+δ+∆) ≤ D2(δ, ∆),

where αγ is the corresponding mixing coefficient. Then it holds

a)

E

(
max

l=1,...,n

∣∣∣∣∣
l∑

j=1

Y (j)

∣∣∣∣∣

2+δ )
≤ D n(2+δ)/2,

where D only depends on δ and the joint distribution of the Y (i).

b)

1

n

∣∣∣∣∣
n∑

j=1

Y (j)

∣∣∣∣∣ = O

(
(log n)1/(2+δ)(log log n)2/(2+δ)

n1/2

)
a.s.

A main tool in the change-point analysis is to make use of an invariance principle. We
present an almost sure invariance principle for sums of d−dimensional random vectors
satisfying strong-mixing condition (for details we refer to Kuelbs and Philipp [21].)

Theorem A.4.8. Let {ξn, n ≤ 1} be in a weak sense stationary sequence of Rd-valued
random vectors, centered at expectations and having (2 + δ)th moments with 0 < δ ≤ 1,
uniformly bounded by 1. Suppose that {ξn, n ≤ 1} satisfies a strong-mixing condition with

α(n) ¿ n−(1+ε)(1+2/δ) ε > 0.

Write
ξn = (ξn1, . . . , ξnd).

Then the two series in

γij = Eξ1iξ1j +
∑

k≥2

Eξ1iξkj +
∑

k≥2

Eξkiξ1j (A.12)

converge absolutely. Denote the matrix ((γij))(1 ≤ i, j ≤ d) by Γ. Then we can redefine
the sequence {ξn, n ≤ 1} on a new probability space together with Brownian motion X(t)
with covariance matrix Γ such that

∑
n≤t

ξn −X(t) ¿ t1/2−λ a.s.

for some λ > 0 depending on ε, δ and d only.
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The symbol ¿ denotes that the left-hand side is bounded by an unspecified constant
times the right-hand side; in the other words, the ¿ symbol is used instead of the O
notation.

Remark A.4.9. Specially for d = 1 and a sequence of random variables {Xn, n ≤ 1}
satisfying conditions of Theorem A.4.8 with EXn = 0, σ2

X = EX2
n we obtain in relation

(A.12)

σ2 = σ2
X

(
1 + 2

∞∑
i=1

ρ(i)

)
.
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A.5 Rank statistics

The asymptotics for the rank statistic is the main tool to derive the validity of the block
permutation method. For more details and proofs we refer to Hušková [15], Antoch and
Hušková [2] and Kirch [20].

Let (X1, . . . , Xn) be i.i.d. random variables with common continuous distribution func-
tion F and let (R1, . . . , Rn) be the corresponding ranks. Consider the simple linear rank
statistic

Sk(a) =
k∑

i=1

(an(Ri)− an) , k = 1, . . . , n,

where an(1), . . . , an(n) are scores satisfying:

lim inf
n→∞

1

n

n∑
i=1

|(an(Ri)− an)|ν ≤ D1 (A.13)

for some ν > 2 and

lim sup
n→∞

1

n

n∑
i=1

|(an(Ri)− an)|2 ≥ D2, (A.14)

where an = 1
n

∑n
i=1 an(i) and D1, D2 > 0 are some constants.

The main theorem for ranks statistics states:
Theorem A.5.1. Let (X1, . . . , Xn) be i.i.d. random variables with common distribution
functions F . Let assumptions (A.13), (A.14) are satisfied. Then, as n →∞, it holds for
all t ∈ R

lim
n→∞

P

(
A(log n) max

1≤k<n

{√
n

k(n− k)

1

σ̂n(a)
|Sk(a)|

}
−D(log n) ≤ t

)
= exp(−2e−t) a.s.,

where
A(x) =

√
2 log x,

D(x) = 2 log x +
1

2
log log x− 1

2
log π,

σ2
n(a) =

1

n− 1

n∑
i=1

(an(i)− an)2 .
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