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Abstract

The mathematical approach to the problem of in�nitesimal
deformations can be presented as a part of the global di�er-
ential geometry. A necessary and su�cient condition for the
existence of the second order in�nitesimal bendings is deter-
mined.
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1 A Mathematical De�nition of In�nites-

imal Deformations

Let a regular surface S be given by the vector equation

S = fR;R = r(�1; �2); (�1; �2) 2 
g ; (1)

where 
 is an open subset of R2, S : 
! R3.
A bending of the surface S can be described as a process in where

all the single points of the surface are displaced as if they were rigid
bodies.

An in�nitesimal deformation (bending) of the surface S is given
by a vector �eld z along r de�ned on 
 tangent to a bending er at
t = 0

z(�1; �2) =
@er
@t

(�1; �2; t) jt=0 :

The surface S is included in the family of surfaces St (S = S0),
expressed by the equation

St : er(�1; �2; t) = r(�1; �2) + tz(�1; �2) (2)

in a neighborhood of (�1; �2) is an immersion for su�ciently small t
and

dest2 = ds2 + t2(dz:dz):
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Since
dest2 = ds2 +O(t2);

der:der = dr:dr+O(t2);

dz:dr = 0:

The latter condition is valid if and only if the system of three
partial di�erential equations hold

@r

@�1
:
@z

@�1
= 0;

@r

@�1
:
@z

@�2
+

@r

@�2
:
@z

@�1
= 0;

@r

@�2
:
@z

@�2
= 0: (3)

The existence of an in�nitesimal deformations �eld z is equivalent
to the existence and uniqueness of a map y such that

y : 
! R3

and
dz = y� dr: (4)

The rotation �eld for which the previous relation is valid is the
vector �eld y.

The in�nitesimal deformations z can be then expressed by a ro-
tation �eld y : 
! R3 and a translation �eld s : 
! R3 and

z = s+ y� r: (5)

Note that the last two equations together are equivalent to the
relation

ds = r� dy: (6)

If z is a vector �eld along r tangent to a bending through Eu-
clidean motion, then z is called a trivial in�nitesimal deformations
(bending) �eld. The surface is rigid if it allows only for trivial in-
�nitesimal deformations �eld. The trivial deformation �eld has the
form of

z = a� r+ b; (7)

where a and b are constant vectors.
If the rotation vector �eld is constant then the respective in�nites-

imal bending is trivial and conversely a bending is trivial if the in-
�nitesimal bendings are trivial at all t.

We only remark that the condition (4), respectively (5), is equiv-
alent to the relation

ds = r� dy; (8)
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respectively

s = z+ r� y: (9)

In particular, we have ds:dy = 0.
As (y; s) describes the screw displacement of each point under an

in�nitesimal deformation of the surface given by r, (r; z) describes
the screw displacement under an in�nitesimal deformation of each
point of the surface given by y.

2 Analysis of the in�nitesimal deforma-

tions �eld

The problem of �nding all in�nitesimal deformations of an immersion
can be solved by establishing a partial di�erential equation. This par-
tial di�erential equation is a linear homogeneous equation of second
order and it is hyperbolic in the case negative Gaussian curvature and
elliptic for positive Gaussian curvature. The solution of the partial
di�erential equation, asymptotic directions giving the characteristics,
might only lead to trivial in�nitesimal deformations are tangent to
Euclidean motions and the immersion is called in�nitesimally rigid.

For z as well as s the following compatibility conditions must be
ful�lled

@2z

@�1@�2
=

@2z

@�2@�1
;

@2y

@�1@�2
=

@2y

@�2@�1
;

@2s

@�1@�2
=

@2s

@�2@�1
: (10)

We have
@s

@�1
= z�

@y

@�1
;

analogously for the second variable

@s

@�2
= z�

@y

@�2
:

Hence we have that the equation

@2s

@�1@�2
=

@2s

@�2@�1

is ful�lled if and only if it holds

@y

@�1
�

@r

@�2
=

@y

@�2
�

@r

@�1
:
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The latter condition is valid if there exist functions � : 
 � R2 ! R,
� : 
 � R2 ! R, 
 : 
 � R2 ! R such that

@y

@�1
= �

@r

@�1
+ �

@r

@�2
;

@y

@�2
= 


@r

@�1
� �

@r

@�2
: (11)

Hence

dy =
@y

@�1
d�1+

@y

@�2
d�2 =

�
�
@r

@�1
+ �

@r

@�2

�
d�1+

�


@r

@�1
� �

@r

@�2

�
d�2:

(12)
If

@

@�2

�
�
@r

@�1
+ �

@r

@�2

�
=

@

@�1

�


@r

@�1
� �

@r

@�2

�
(13)

then (12) is the total di�erential of the vector function y, by
integrating we get the �eld y(�1; �2).

It can be proved, that if the following partial di�erential equations
are ful�lled

@�

@�2
�
@


@�1
= �1

11

 � 2�1

12
�� �1

22
�; (14)

@�

@�1
+
@�

@�2
= �2

11

 � 2�2

12
�� �2

22
�; (15)


b11 � 2�b12 � �b22 = 0; (16)

where bij be the coe�cients of the second fundamental form and �i
jk

denotes the Christo�el's symbol of the surface, then (13) holds.

dz =

�
y�

@r

@�1

�
d�1 +

�
y�

@r

@�2

�
d�2 (17)

is the total di�erential, we get the �eld z(�1; �2) by integration.

3 In�nitesimal deformations of elliptic

paraboloid

We consider the vector equation of hyperbolic paraboloid

r = r(�1; �2) = (�1; �2;��
2

1
� �2

2
+ 1) (18)
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For this surface we have:

�1
11

= �1
22

=
4�1

1 + 4�2
1
+ 4�2

2

; �2
11

= �2
22

=
4�2

1 + 4�2
1
+ 4�2

2

;

�1
12

= �2
12

= 0;

b11 = b22 =
�2p

1 + 4�2
1
+ 4�2

2

; b12 = 0:

From (14), (15) and (16) we have � = 
 and

@�

@�2
�
@


@�1
= 0; (19)

@�

@�1
+
@�

@�2
= 0: (20)

For y�1
, respectively y�2

we get

@y

@�1
= �

@r

@�1
+ �

@r

@�2
= (�; �;�2��1 � 2��2);

respectively

@y

@�2
= 


@r

@�1
� �

@r

@�2
= (
;��;�2
�1 + 2��2):

Hence it follows

dy =
@y

@�1
d�1+

@y

@�2
d�2 = (�; �;�2��1�2��2)d�1+(
;��;�2
�1+2��2)d�2:

By integrating, we get the rotation �eld of hyperbolic paraboloid
in the form
y(�1; �2) = (y1(�1; �2); y2(�1; �2); y2(�1; �2)).

Now we determine the in�nitesimal deformations �eld of elliptic
paraboloid. It appears, that

dz = y� dr =

������
e1 e2 e3

y1(�1; �2) y2(�1; �2) y3(�1; �2)
d�1 d�2 �2�1d�1 � 2�2d�2

������ =
= (�2y2(�1; �2)�1; y3(�1; �2) + 2y1(�1; �2)�1;�y2(�1; �2))d�1+

+(�2y2(�1; �2)�2 � y3(�1; �2); 2y1(�1; �2)�2; y1(�1; �2))d�2:

By integrating, we get the in�nitesimal deformations �eld of elliptic
paraboloid
z(�1; �2) = (z1(�1; �2); z2(�1; �2); z3(�1; �2)).
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4 In�nitesimal deformations of hyperbolic

paraboloid

We consider the vector equation of hyperbolic paraboloid

r = r(�1; �2) = (�1; �2; �1:�2): (21)

For this surface we have:

�1
11

= �2
11

= �1
22

= �2
22

= 0; �1
12

=
�2

1 + �2
1
+ �2

2

; �2
12

=
�1

1 + �2
1
+ �2

2

;

(22)

b11 = b22 = 0; b12 =
1p

1 + �2
1
+ �2

2

: (23)

From (14), (15) and (16) we have

� = 0; � = �(�1); 
 =  (�2); (24)

where �(�1),  (�2) are arbitrary functions.
For y�1

, respectively y�2
we get

@y

@�1
= �

@r

@�1
+ �

@r

@�2
= �(�1)(0; 1; �1) = (0; �(�1); �1�(�1));

respectively

@y

@�2
= 


@r

@�1
� �

@r

@�2
=  (�2)(1; 0; �2) = ( (�2); 0; �2 (�2)):

Hence it follows

dy =
@y

@�1
d�1+

@y

@�2
d�2 = (0; �(�1); �1�(�1))d�1+( (�2); 0; �2 (�2))d�2:

By integrating, we get the rotation �eld of hyperbolic paraboloid
in the form
y(�1; �2) = (y1(�1; �2); y2(�1; �2); y3(�1; �2)). Now we can determine
the in�nitesimal deformation �eld of hyperbolic paraboloid. It ap-
pears, that

dz = y� dr =

������
e1 e2 e3

y1(�1; �2) y2(�1; �2) y3(�1; �2)
d�1 d�2 �2d�1 + �1d�2

������ =
= (y2(�1; �2)�2; y3(�1; �2)� y1(�1; �2)�2;�y2(�1; �2))d�1+

+(y2(�1; �2)�1 � y3(�1; �2);�y1(�1; �2)�1; y1(�1; �2))d�2:

By integrating, we get z(�1; �2) = (z1(�1; �2); z2(�1; �2); z3(�1; �2)).
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5 In�nitesimal deformations of Hacar's sur-

face

In the last case, let us consider the vector equation of Hacar's surface
in the form

r = r(�1; �2) = (�1; �2; (1� �2
1
)(1 + �2

2
)): (25)

For this surface we have:

�1
11

=
4�1(1 + �2

2
)2

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
; �2

11
=

�4�2(1 + �2
2
)(1� �2

1
)

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
;

�1
22

=
�4�1(1� �2

1
)(1 + �2

2
)

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
; �2

22
=

4�2(1� �2
1
)2

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
;

�1
12

=
8�2

1
�2(1 + �2

2
)

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
; �2

12
=

�8�1�
2

2
(1� �2

1
)

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
;

(26)

b11 =
�2(1 + �2

2
)p

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
; b12 =

�4�1�2p
1 + 4(1 + �2

1
�2
2
)(�2

1
+ �2

2
)
;

b22 =
2(1� �2

1
)p

1 + 4(1 + �2
1
�2
2
)(�2

1
+ �2

2
)
: (27)

Substituting to (14), (15) and (16) we get the following system of
partial di�erential equation

@�

@�2
�
@


@�1
= 0;

@�

@�1
+
@�

@�2
= 0; (28)

�2
(1 + �2
2
)� 8��1�2 � 2�(1� �2

1
) = 0: (29)

The general solution of (28) we can write in the form

�(�1; �2) =

Z �Z
�(�1; �2)d�1

�
d�2 �

Z
 (�1)d�1 +

Z
�1(�2)d�2;

(30)

�(�1; �2) =

Z �Z
��(�1; �2)d�2

�
d�2 + �2 1(�1) +  2(�2); (31)


(�1; �2) =

Z �Z
�(�1; �2)d�1

�
d�1 + �1�1(�2) + �2(�2); (32)
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where �,  1,  2, �1, �2 are arbitrary functions, for which is (29)
satis�ed.

For y�1
, respectively y�2

we get

@y

@�1
= �

@r

@�1
+ �

@r

@�2
; resp.

@y

@�2
= 


@r

@�1
� �

@r

@�2
:

Hence

dy =
@y

@�1
d�1 +

@y

@�2
d�2:

By integrating, we get the rotation �eld in the form
y(�1; �2) = (y1(�1; �2); y2(�1; �2); y3(�1; �2)). As in the latter cases
we can determine the in�nitesimal deformations �eld z(�1; �2) =
(z1(�1; �2); z2(�1; �2); z3(�1; �2)).
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