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Abstract
The mathematical approach to the problem of infinitesimal
deformations can be presented as a part of the global differ-
ential geometry. A necessary and sufficient condition for the
existence of the second order infinitesimal bendings is deter-
mined.
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1 A Mathematical Definition of Infinites-
imal Deformations

Let a regular surface S be given by the vector equation

S = {R; R = r(§17€2), (51752) € Q}a (]-)

where Q is an open subset of R, S : Q — R3.

A bending of the surface S can be described as a process in where
all the single points of the surface are displaced as if they were rigid
bodies.

An infinitesimal deformation (bending) of the surface S is given
by a vector field z along r defined on 2 tangent to a bending T at
t=20

z(61,62) = %(51752715) li=o -

The surface S is included in the family of surfaces S; (S = Sp),
expressed by the equation

Sp o T(61,6,t) =161, 8) +12(81,6) (2)

in a neighborhood of (£1,£2) is an immersion for sufficiently small ¢
and
d5;” = ds? + t*(dz.dz).
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Since
d5;® = ds®> + 0(t?),

dr.d¥ = dr.dr + O(#?),
dz.dr = 0.

The latter condition is valid if and only if the system of three
partial differential equations hold

N N
06708 7 06 0& 06 0& T 06 0&

The existence of an infinitesimal deformations field z is equivalent
to the existence and uniqueness of a map y such that

(3)

y: Q= R?

and
dz =y x dr. (4)

The rotation field for which the previous relation is valid is the
vector field y.

The infinitesimal deformations z can be then expressed by a ro-
tation field y : Q@ — R? and a translation field s : Q@ — R® and

Z=s+yXr. (5)

Note that the last two equations together are equivalent to the
relation
ds =r x dy. (6)

If z is a vector field along r tangent to a bending through Eu-
clidean motion, then z is called a trivial infinitesimal deformations
(bending) field. The surface is rigid if it allows only for trivial in-
finitesimal deformations field. The trivial deformation field has the
form of

Zz=axr+b, (7

where a and b are constant vectors.

If the rotation vector field is constant then the respective infinites-
imal bending is trivial and conversely a bending is trivial if the in-
finitesimal bendings are trivial at all ¢.

We only remark that the condition (4), respectively (5), is equiv-
alent to the relation

ds =r x dy, (8)
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respectively

s=z+rxy. (9)

In particular, we have ds.dy = 0.

As (y, s) describes the screw displacement of each point under an
infinitesimal deformation of the surface given by r, (r,z) describes
the screw displacement under an infinitesimal deformation of each
point of the surface given by y.

2 Analysis of the infinitesimal deforma-
tions field

The problem of finding all infinitesimal deformations of an immersion
can be solved by establishing a partial differential equation. This par-
tial differential equation is a linear homogeneous equation of second
order and it is hyperbolic in the case negative Gaussian curvature and
elliptic for positive Gaussian curvature. The solution of the partial
differential equation, asymptotic directions giving the characteristics,
might only lead to trivial infinitesimal deformations are tangent to
Euclidean motions and the immersion is called infinitesimally rigid.

For z as well as s the following compatibility conditions must be
fulfilled

0%z _ 0%z 8%y _ Oy 8%s _ 0%s
06108, 080&°T 0606 060&°T 0606  0&0&
We have

(10)

Os dy

— =ZX —,
23] 06

analogously for the second variable

0

o _ 9y
23 9&>

Hence we have that the equation
0%s 0%s

06108 06,06
is fulfilled if and only if it holds
gy or Oy O
064  0&% 0% 06
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The latter condition is valid if there exist functions o : Q@ C R?> = R,
B:QCR*— R,v:QC R?>— R such that

dy  Or or dy  Or Or

Hence
Jy dy B Or ﬁ
oy = gttt = (o5, + 3¢, ) a6+ (o3, “‘%)fi‘
12
If

0 Or 0 Or Or
< T S (4 13
e (a6 tim) =g (g o) 09
then (12) is the total differential of the vector function y, by
integrating we get the field y (&1, &2).

It can be proved, that if the following partial differential equations
are fulfilled

Oa 0

552 ag = F%l’y 2I‘12a F%zﬂa (14)

Oa 8ﬂ

551 8§ F%17 2I‘12a F%Qﬁa (15)
vb11 — 2abia — Bbas = 0, (16)

where b;; be the coefficients of the second fundamental form and T%,
denotes the Christoffel’s symbol of the surface, then (13) holds.

dz:( 6£>d£1+< §€2>d€2 (17)

is the total differential, we get the field z(&;,&;) by integration.

3 Infinitesimal deformations of elliptic
paraboloid

We consider the vector equation of hyperbolic paraboloid

r=r(£,6) = (6,6, - & +1) (18)
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For this surface we have:

451 < 4&-2
1 _pl 2 _ 2 _
=t =g g T T g g
F%Q = F%z =0,
-2
b = b‘ =, b - 0
11 = b2 T 12
From (14), (15) and (16) we have § = v and
oa  Ov
o 2oy, 19
o6~ o6 (19
Oa  0f
= ++—=0 20
o6+ o, 20

For y , respectively y,, we get

dy  Or or _ _ — 98¢
(9751 = 046751 + 6762 - (aaﬁa 20{61 2562)7

respectively

dy or or
_— = _— _— = — —2 2 9.
o6 = Vo5 %05, (7, —a, =276 + 2aé>)

Hence it follows

0 0

dy = =2-dé& +52-d& = (a, f, —206 ~266)dé1+(7, —a, —2961+206,)d6.
& &

By integrating, we get the rotation field of hyperbolic paraboloid

in the form

y(61,62) = (1(&1,€2), 9261, 62), 92(61,62))-
Now we determine the infinitesimal deformations field of elliptic
paraboloid. It appears, that

€1 €9 (S
dz=yxdr=|y1(&,&) ¥206,8) ys(&1, &) =
d&; dé —2£1dé; — 262dEs

= (=2y2(&1,&)&1,y3(61,62) + 2y1(61,62)61, —y2(&1,62) ) A& +
+(=2y2(&1,62)& — y3(&1,€2), 2y1 (€1, 62) &2, w1 (&1, €2))dEa-

By integrating, we get the infinitesimal deformations field of elliptic
paraboloid

7(&1,&2) = (21(61,62), 22(&1,&2), 23(61,62))-
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4 Infinitesimal deformations of hyperbolic
paraboloid

We consider the vector equation of hyperbolic paraboloid

r= 1‘(51752) = (51752751-52)- (21)
For this surface we have:
52 2 51

T, 2, 20 ]-—“_77
1+8+¢8 7 1+£%(;2§)§

F’h = F% = F%z = ng =0, F%z =

1
by = ——.
From (14), (15) and (16) we have
Q= 07 B = ¢(§1)7 Y= ¢(€2)7 (24)

where ¢(&1), (&) are arbitrary functions.
For y, , respectively y,, we get

bll = b22 = 0, (23)

dy or B B
S = g+ AgE = HEN0.L.6) = (0.6(6), 6:0(61).
respectively

dy  oOr 81’

o~ on "0
Hence it follows
dy

dy = iy et g da = (0,661, 69(E))dE+H(E2). 0, &)

By integrating, we get the rotation field of hyperbolic paraboloid
in the form
y(&1,&) = (Y1(61,€2),92(61,€2),y3(&1,€2)). Now we can determine
the infinitesimal deformation field of hyperbolic paraboloid. It ap-
pears, that

= (&)(1,0,&2) = (¥(&2),0,59(&2)).

€1 €9 (S
dz =y xdr =| y1(&,&%)  y2(&1,6) y3(&1,&2) =
dé; dés §od&y + §1d6

= (y2(&1,62)&2,y3(61,62) — 1 (61, 82)62, —y2(&1, &2))dEr +
+(y2(61,62)61 — y3(&1,62), =41 (61, €2)61,y1 (61, 62))dEa.
By integrating, we get z(&1,&2) = (21(&1,&2),22(&1,62), 23(61,62))-
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5 Infinitesimal deformations of Hacar’s sur-

face

In the last case, let us consider the vector equation of Hacar’s surface
in the form

r=r(&,8) = (6,86, (1-&)(1+£)). (25)
For this surface we have:
L 461+ &3)? . . —46(1+8)1-8)
UT1H4(1+ @)+ Q) N T 1441+ 83 (8 + &)
Lo TAG0-@)(0+8) e 46, (1 - &)?
PUIH41+ GG+ ) 7T 14401+ GG+ 8)
oo 8¢1&5(1 + &3) e —8¢,65(1 - &7)
P14+ 88+ 8) P 1+4(1+ 8 (& +£§&é>
- -2(1+&3) bis —4&6

i+ E8)E+8)
_ 201 - &) |
VI+41+88)(E+ &)

Substituting to (14), (15) and (16) we get the following system of
partial differential equation

da 0y 0 da 0B

Vi1 E8)E18)

baso (27)

A T TA T

—2y(1+ &) —8a&i& — 28(1 — &) = 0. (29)

The general solution of (28) we can write in the form

0, (28)

aen&) = [ ( / ¢(£1,£2)d£1> de: - [viede + [ Ou(@)de,
(30)

sene) = | ( / —¢(51,52)d52> 46> + &1 (E) +1ha(6), (31)

ene) = [ ( / ¢(§1,£2>d£1) a6+ 601(&) + O:(8),  (32)
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where @, 11, 12, ©1, Oy are arbitrary functions, for which is (29)
satisfied.
For y,, , respectively y., we get

gy _ ox poe oy or or
T TR T e T T T
Hence 5
Yy
dy = 6{ Y qg + 98, 46

By integrating, we get the rotation field in the form
y(&1,8) = (11(&,6),¥2(6,&2),y3(&1,&)).  As in the latter cases
we can determine the infinitesimal deformations field z(&,&) =

(21(61,&2), 22(&1, &2), 23(&1, &2))-
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