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GENERALIZATION OF LAGUERRE
GEOMETRY

Abstract

The article deals with the problem of building fundamentals
of Laguerre geometry using Minkowski sum. The space of
Laguerre’s oriented spheres is shown as a result of an effort
to get space that forms a group with Minkowski sum. If we
start with a set of closed balls in inner product space, we get
a space with behaviour identical to classical oriented sphere
space. This way we show that Laguerre sphere geometry is a
particular example of more general kind of geometry based on
operation of Minkowski sum.
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1 Building the space

Definition 1 Consider a linear space V over the field R, A,B ⊂ V,
λ ∈ R, λ ≥ 0. The set A + B = {x + y: x ∈ A, y ∈ B} we call
Minkowski sum of A and B, λ ·A = {λx: x ∈ A} we call λ-multiple
of A.

Example 1 Let X be an inner product space over the field R, denote
by B the set of all closed balls in X. Then (B, +) is a monoid
with the cancellation property, i.e. + is closed on B, commutative,
asociative, (B, +) has the identity element {o} and the cancellation
property. For non-negative real numbers both +, · distribution laws
hold, 1 · A = A for any A ∈ B, but inverse elements to + don’t
generally exist. The non-existence of inverse elements is the only
reason why (B, +, ·) is not a linear space.
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Example 2 Let’s consider the set of all non-negative real numbers
R

+

0 and operations +, · upon it. Then (R+

0 , +) is a monoid with the
cancellation property. Both +, · distribution laws hold, 1 · x = x for
any x ∈ R

+

0 and inverse elements don’t generally exist. The non-
existence of inverse elements to + is the only reason why (R+

0 , +, ·)
is not a linear space similarly to set of closed balls in inner product
space.

�

These two examples have introduced structures that have very
similar properties and the same problem of non-existence of inverse
elements to +. For real numbers the sollution is well-known. Let’s
follow this well-known construction of negative numbers as equiva-
lence classes upon the set of pairs and define some kind of negative
sets.

Definition 2 Let P(V) denotes the set of all subsets of the linear
space V. Denote by M any subset of P(V) for which following con-
ditions are satisfied:

(M1) ∃A ∈ M,A 6= ∅

(M2) ∀A,B ∈ M : A + B ∈ M

(M3) ∀λ ∈ R
+

0 ,A ∈ M : λA ∈ M

(M4) ∀A,B,C ∈ M : A + C = B + C ⇒ A = B

(M5) ∀λ, α ∈ R
+

0 ,A ∈ M : (λ + α)A = λA + αA

(M6) ∀A ∈ M, x ∈ V : A + x ∈ M

(M7) ∀A,B ∈ M : ∃C ∈ M, o ∈ C : A ⊂ B ⇒ A + C = B

Remark 1 An example of the set M may be the set B of all closed
balls. In general, (M, +) is a monoid with the cancellation property,
For non-negative real numbers both +, · distribution laws hold, for
all A ∈ M: 1 · A = A and as in previous examples inverse elements
don’t generally exist. The non-existence of inverse elements is the
only reason why (M, +, ·) is not a linear space.

Definition 3 Let the set M satisfies (M1)-(M7). We define the
binary relation ∼ upon the set M

2:

[A1,A2] ∼ [B1,B2] ⇔ A1 + B2 = A2 + B1
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Lemma 1 Relation ∼ is equivalence.

Proof: The proof is straightforward. The cancellation property of +
is necessary to prove transitivity.

Definition 4 Let V(M) denotes the set of all equivalence classes of
the relation ∼. We define

[A1,A2] + [B1,B2] = [A1 + B1,A2 + B2],

λ · [A1,A2] =

{

[λ ·A1, λ ·A2] for λ ≥ 0,
[(−λ) ·A2, (−λ) ·A1] otherwise.

Remark 2 It is necessary to prove that the previous definition is
correct. The proof is straightforward and the cancellation property
of (M, +) and both distribution laws are essential.

Theorem 1 (V(M), +, ·) is a linear space over R.

Proof: Straightforward.

2 Structure of the space

Theorem 2 Consider a mapping ϕ: M → V(M), ϕ(A) = [A, {o}].
Then ϕ is injective homomorphism of (M, +, ·) into (V(M), +, ·).

Definition 5 The homomorphism ϕ defined above will be called nat-
ural homomorphism of (M, +, ·) into (V(M), +, ·).

The existence of the natural homomorphism ϕ allows us to iden-
tify elements of M with corresponding elements of V(M). These
elements will be called non-negative (or positive) sets, the other ele-
ments will be called negative sets.

Theorem 3 Consider a mapping ϑ:V → V(M), ϑ(x) = [{x}, {o}].
Then ϑ is injective homomorphism of (V, +, ·) into (V(M), +, ·).

Definition 6 The homomorphism ϑ defined above will be called nat-
ural homomorphism of (V, +, ·) into (V(M), +, ·).

The existence of the natural homomorphism ϑ allows us to identify
elements of V with corresponding elements of V(M). Images in ϑ of
points in V will be called points in V(M). For the structure of the
space V(M) see fig. 1.



Jaromı́r Dobrý
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Figure 1: Structure of the space V(M)

3 Generalized subset relation

Now let’s consider structure (M,⊂) as the partially ordered set. We
may expect homomorphism ϕ converts the relation ⊂ to some newly
defined partial order relation �.

Definition 7 Define the binary relation � upon the set V(M):

[A1,A2] � [B1,B2] ⇔ A1 + B2 ⊂ A2 + B1

If for A, B ∈ V(M) holds A � B we say that A is contained in B.

Remark 3 It is necessary to prove that the previous definition is
correct. (M4) and (M7) are necessary.

Theorem 4 Relation � is a partial order relation, i.e. it is reflexive,
antisymmetrical and transitive.

Following theorem allows us to consider relation � as a generalized
subset relation.

Theorem 5 Consider the natural homomorphism ϕ of (M, +, ·) into
(V(M), +, ·). Then A ⊂ B if and only if ϕ(A) � ϕ(B). It means
that ϕ is an isomorphism of (M, +, ·,⊂) onto (ϕ(M), +, ·,�).

4 Example – Oriented ball space

In this section, we show a particular example of our geometry. If we
start with set of all closed balls in inner product space we get space
identical to classical oriented sphere space.
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Definition 8 Consider set B = {B(x, r) : x ∈ X, r ∈ R
+

0 } of all
closed balls in X, where X is the inner product space. Partial ordered
linear space (V(B), +, ·,�) will be called oriented ball space.

Now, it’s time to show relationship between oriented ball space
and oriented sphere space. This relationship is obvious for non-
negative balls. Denote by S(x, r) classical Laguerre’s oriented sphere
where x ∈ V denotes center of the sphere and r ∈ R denotes oriented
radius, and by S the set of all oriented spheres in V.

Definition 9 Let’s define the mapping B:V × R → V(B):

B(x, r) =

{

[B(x, r), {o}] if r ≥ 0
[{x}, B(o,−r)] otherwise

The element B(x, r) ∈ V(B) will be called oriented ball with center x

and oriented radius r.

Definition 10 Define indefinite inner product upon the space V(B):
〈

B(x1, r1),B(x2, r2)
〉

PE

= 〈x1, x2〉 − r1r2

Remark 4 The indefinite inner product from the previous definition
is obviously indefinite inner product.

Theorem 6 Consider mapping α: S → V(B), α(S(x, r)) = B(x, r).
Then α is the isomorphism of (S, +, ·) onto (V(B), +, ·) and also
isometry in corresponding indefinite inner product spaces.

Proof: Obvious.

Remark 5 The geometrical meaning of these two spaces is nearly
the same and there is one-to-one ”identical” mapping of each space
to another that maps a sphere to ball with the same center and
oriented radius. We may identify these two spaces.

5 Klein Geometry

Definition 11 Let’s consider a space V(M) and denote by L(V(M))
a group of all afinne transformations of the space V(M) preserving
the partial order relation �. Then we define a geometry

G =
(

V(M), L(V(M))
)
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It is obvious from above that a particular example of this new kind
of geometry is similar to Laguerre geometry, given the set B of all
closed balls as the set M. Accurately, we may say that every Laguerre
transformation (considered as similarity in indefinite inner product
space) can be written as the transformation preserving � or composed
mapping of transformaiton preserving � and a transformation that
maps every oriented ball B(x, r) to B(x,−r).

6 Summary

This new approach to Laguerre geometry may allow us to use today’s
latest methods of this geometry in more general spaces to solve more
general kind of problems. The result may be faster algorithm to
solve the problem where another way is used today, easier proof of a
theorem or maybe a way to solve some of the open problems.

Future work will be concentrated on a study of the system of
conditions in definition 2, on a study of the spaces of the form V(M),
formulation of new theorems and on a study of well known problems
of CAGD and application of this new geometry to solve them.
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