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Abstract
Describing Möbius geometry as a subgeometry of the projec-
tive geometry (where Möbius hyperspheres are considered as
intersections of hyperplanes with n-sphere Σ ⊂ Pn+1) enables
us to solve some specific problems of geometric modelling.
With the help of pentaspherical coordinates, it relates some
special curves and surfaces in P4 to special surfaces often used
in geometric design. The practical use is demonstrated.
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1 Introduction
The elementar objects in projective geometry are points and hy-
perplanes with incidence as their basic relation. Thus, surfaces in
3-dimensional projective space can be considered as sets of points
as well as envelopes of planes. French mathematician Jean Gas-
ton Darboux (1842–1917) chose in his famous book Leçons sur la
théorie général des surfaces et les applications géométriques du calcul
infinitésimal a different approach — he described some special sur-
faces as envelopes of spheres. And this is the basic idea from which
the concept of sphere geometries arises because several geometric me-
thods and properties are taken in much easier and more accessible
way when not points and sets of points but spheres and sets of spheres
are considered as elementary objects.

Classical sphere geometries are Laguerre geometry [8] dealing with
oriented hyperspheres and Möbius geometry [1], [3], [4] which is the
main subject of this short contribution. Via special projections, both
mentioned geometries can be considered as special cases of more ge-
neral so called Lie geometry — more details in [7]. The central aim



Miroslav Lávička

of this article is to figure some applications of Möbius geometry on
chosen problems of geometric modelling (Computer Aided Geometric
Design, CAGD) and through this to show that classical geometries
still survive and in addition, they bring remarkable new results and
algorithms.

2 Projective model of Möbius geometry
Möbius geometry is a classical sphere geometry called after famous
German mathematician August Ferdinand Möbius (1790–1868).
According to Felix Klein and its Erlangen programme (1872), the
content of Möbius geometry is the study of those properties which are
invariant under Möbius transformations of Möbius space Mn (where
Mn = En ∪ {∞} is the conformal closure of the Euclidean space
En completed with the ideal point ∞ lying on every hyperplane but
outside every hypersphere — both Euclidean hyperspheres and hy-
perplanes completed with ∞ are called Möbius hyperspheres). Then,
Möbius transformations are such bijections that preserve non-oriented
Möbius hyperspheres in Mn. All Möbius transformations in Mn form
a group which is generated by inversions, i.e. reflections in hyper-
spheres (thus, Euclidean geometry can be obtained as a subgeometry
of Möbius geometry when restricted to reflections in hyperplanes).
Just introduced model is called a standard or classical model. In this
article, we will work with further model.

Let n-dimensional Euclidean space is immersed into Euclidean
space En+1 as the hyperplane xn+1 = 0 and let Pn+1 denote the
projective extension of En+1 equipped with homogenous coordinates
(x0, x1, . . . , xn+1)T ∈ Rn+2. We consider the unit n-sphere Σ ⊂ Pn+1

described by the equation

Σ : −x2
0 + x2

1 + . . . + x2
n+1 = xT · EM · x = 0, (1)

where EM = diag(−1, 1, . . . , 1) and an indefinite bilinear form

〈x, y〉M = xT · EM · y = −x0y0 + x1y1 + . . . + xn+1xn+1 (2)

is called M-scalar product. Hence, the hypersphere Σ is described
by the equation 〈x, x〉M = 0, similarly we denote Σ+ : 〈x, x〉M > 0
(the exterior of Σ) and Σ− : 〈x, x〉M < 0 (the interior of Σ). Thus
Pn+1 = Σ− ∪ Σ ∪ Σ+.

If we apply so called extended stereographic projection with respect
to n-sphere Σ and northpole n = (1, 0, ..., 0, 1)T we get one-to-one cor-
respondence between points in Pn+1 and Möbius hyperspheres in Mn.
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What kind of mapping is the extended stereographic projection Ψ?
Shortly said, Ψ is a combination of the polarity Π : Pn+1 → P∗n+1

induced by n-sphere Σ (an arbitrary point s ∈ Pn+1 is mapped onto
its polar hyperplane Π(s) ∈ P∗n+1 where P∗n+1 denotes a dual space
to Pn+1) and the standard stereographic projection σ : Σ → Mn =
= En ∪ {∞} (the intersection of Π(s) with Σ is then mapped onto
the Möbius hypersphere S of Mn) — the principle is seen in Fig. 1.
This model is called a projective model.

s

n=(1,0,...,0,1)

Figure 1: Extended stereographic projection Ψ : s 7→ S.

We can easily derive the analytic expression of the extended stere-
ographic projection Ψ. Let s = (s0, s1, . . . , sn+1)T ∈ Pn+1 then

(i) if s0 = sn+1 (i.e. s ∈ ν : x0 − xn+1 = 0, where ν is the
tangent hyperplane of Σ at the northpole n — so called north
hyperplane) then

Ψ(s) : −s0 + s1x1 + s2x2 + . . . + snxn = 0 (3)

which is a hyperplane in Mn;

(ii) if s0 6= sn+1 (i.e. s 6∈ ν) then Ψ(s) is a hypersphere S(m, r) ⊂
⊂ Mn with midpoint m and radius r where

m =
1

s0 − sn+1
· (s1, . . . , sn)T, r2 =

−s2
0 + s2

1 + . . . + s2
n+1

(s0 − sn+1)2
(4)

or with the help of M-scalar product (2)

m =
−1

〈s,n〉M
· (s1, . . . , sn)T, r2 =

〈s, s〉M(
〈s,n〉M

)2 . (5)

From (5) it is seen that points x ∈ Pn+1 fulfilling the condition
〈x, x〉M > 0 (points lying in Σ+) are mapped onto real hyperspheres,
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if 〈x, x〉M < 0 (points lying in Σ−) then images are imaginary hy-
perspheres and points for which 〈x, x〉M = 0 (points lying on Σ) are
mapped onto points of Mn.

Furthermore, we also consider the inverse stereographic projection
Φ = Ψ−1 : Mn → Pn+1 and we can easily derive

(a) a hypersphere S with midpoint m = (m1,m2, . . . ,mn)T and
radius r is mapped onto the point

Φ(S) = (m2
1 + . . . + m2

n − r2 + 1, 2m1, 2m2, . . .

. . . , 2mn,m2
1 + . . . + m2

n − r2 − 1)T 6∈ ν; (6)

(b) a hyperplane H : h0 + h1x1 + . . . + hnxn = 0 is mapped onto
the point

Φ(H) = (−h0, h1, . . . , hn,−h0)T ∈ ν. (7)

The homogenous coordinates (s0, s1, . . . , sn+1)T ∈ Rn+2 uniquely
representing Möbius hyperspheres of Mn in projective space Pn+1 are
called n-spherical coordinates; for n = 2, 3 we speak about tetracyclic
or pentaspherical coordinates.

3 Surfaces of special classes
Let x = (x, y, z)T or (x1, x2, x3)T denote nonhomogenous coordinates
in M3 = E3 ∪ {∞} and y = (y0, y1, y2, y3, y4)T are pentaspherical
coordinates in P4. Furthermore, we know from previous section that
“the world of real spheres” is in the projective model the exterior Σ+

and “the world of planes” is the north 3-plane ν (especially northpole
n = (1, 0, 0, 0, 1) is the image of the ideal hyperplane).

Of course, in any sphere geometry, there is more emphasis laid
on spheres rather then planes — i.e. these geometries are very useful
and applicable in a very straightforward way for geometric objects
derived from spheres, e.g. for canal surfaces. So called canal surfaces
are defined as the envelopes of one parameter sets of spheres

S(t) :
(
x−m(t)

)2 − r(t)2 = 0,

where the condition for the existence of the real envelope of moving
spheres sounds ṁ2

t − ṙ2
t = 0.

Applying (6) we get a representation of the 1-parameter family of
spheres in the projective model and through this also a representation
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of its envelope (i.e. of some canal surface) by the curve SΦ(t) lying
in Σ+ ⊂ P4 with the parametric expression

SΦ(t) : y(t) =


m1(t)2 + m2(t)2 + m3(t)2 − r(t)2 + 1

2m1(t)
2m2(t)
2m3(t)

m1(t)2 + m2(t)2 + m3(t)2 − r(t)2 − 1

 (8)

If it is more emphasis laid on planes rather then spheres we can
also use the introduced projective model but we have to restrict our
consideration only on the north tangent plane ν. Then it is easily
seen that general non-developable surface which can be considered as
two parameter set of its tangent planes

H(u, v) : h0(u, v) + h(u, v)T · x = 0

is corresponding to the 2D-surface in ν

H(u, v)Φ :
[
− h0(u, v), h1(u, v), h2(u, v), h3(u, v),−h0(u, v)

]T; (9)

analogously, a developable surface considered as one parameter set of
its tangent planes

H(t) : h0(t) + h(t)T · x = 0 (10)

corresponds to the curve lying in ν

H(t)Φ :
[
− h0(t), h1(t), h2(t), h3(t),−h0(t)

]T
. (11)

Thus, any curve y = y(t) ⊂ P4 represents one parameter family of
Möbius spheres. However, it must be emphasized that surfaces from
M3 can have more curve representation in P4 (see e.g. cylinder or cone
which are both canal and developable surfaces, i.e. one corresponding
curve is lying in ν and another one is not lying in ν).

First, we will consider a line as the simplest curve. Any line `
can be counted as the linear family of points so if we do a translation
via the mapping Ψ we get a linear family of Möbius spheres which
is nothing else than a (linear) pencil of Möbius spheres. As we know
there are three cases — all spheres belonging to the pencil can have
common real circle, point (circle with zero radius), or imaginary circle
— more details in [6]. Mentioned circle C is called carrying circle and
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y = y(t)

a

b

y(t )0

n: x  - x  = 00 4

M M
= -, ,c a n b b n a

Figure 2: Lines in P4 corresponding to pencils of Möbius spheres in M3

it is easily seen that this circle is real (or zero, or imaginary) if and
only if the line ` does not intersect Σ (or is tangent to Σ, or intersect Σ
in two different points). Moreover, the intersection point c of the line
` and the north-plane ν corresponds to the radical plane of pencil
in which the carrying circle is lying. Choosing two points a, b on
the line ` we can easily count not only the intersection point c =
= 〈a,n〉Mb − 〈b,n〉Ma, where n = (1, 0, 0, 0, 1)T, but also the radius
% of carrying circle C with the help of M-scalar product, namely

%2 =
〈a, a〉M〈b,b〉M − 〈a,b〉2M

〈c, c〉2M
(12)

From above expression it is also immediately seen the condition for
two tangent spheres Ψ(a), Ψ(b), namely 〈a, a〉M〈b,b〉M−〈a,b〉2M = 0.
Hence, if we define for every surface P ⊂ M3 an isotropic hypersurface
Γ(P) ⊂ P4 consisting of all points corresponding to Möbius spheres
tangent to P then for the case of sphere Sa = Ψ(a)

Γ(Sa) = 〈a, a〉M〈x, x〉M − 〈a, x〉2M = 0 . (13)

which is nothing else than hypercone in P4 with vertex a and tangent
to Σ. Thus, if we are looking for the family of all spheres tangent to
given two spheres Sa = Ψ(a), Sb = Ψ(b) then we have to consider
corresponding 2D-surface Γ(Sa) ∩ Γ(Sb). Similarly for three spheres
Sa = Ψ(a), Sb = Ψ(b), Sc = Ψ(c) and corresponding curve Γ(Sa) ∩
∩ Γ(Sb) ∩ Γ(Sc) which can be after some simplifications described
as the plane section of one 3-cone tangent to Σ (i.e. the intersection
curve is a conic) — proof in [1]. And because so called Dupin cyclides
(a class of special canal surfaces, due to their geometric properties
often used in CAGD) are defined as envelopes of all spheres touching
three given spheres we have got the correspondence between Dupin
cyclides in M3 and special conic sections in P4.
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4 Modelling via projective model

Now, we will consider a smooth curve y = y(t) of degree n > 1 which
corresponds to some canal surface. Let y(t0) 6∈ ν is a point on it
counted twice as 2 infinitesimally neighboring points — their connec-
tion is a tangent ` of the curve. Via Ψ we get two infinitesimally
neighboring spheres whose intersection is the carrying circle of the
pencil which represents the composing circle of the envelope. Thus,
we have found the correspondence between tangents of the curve in
y = y(t) and composing circles of the envelope of the set of spheres
represented by the curve y = y(t) (similarly for developable surfaces
and carrying lines of pencils of planes).

Finally, we can apply above introduced considerations on one con-
crete example. Let be given given two two canal surfaces, we consider
at both of them circular contacts (i.e. a pair of sphere and composing
circle on it). Our goal is to construct a joining piecewise canal surface
tangent to given surfaces along given circles. The original problem
can be reformulated via Φ into problem of construction of a piecewise
rational curve (image of piecewise canal surface) that is tangent to
pairs of lines at given points (images of two circular contacts).

a =b1 0

b1

c1

b =c2 0
a =c2 2

Figure 3: Joining surfaces in standard and projective model

In Fig. 3 we can see two G1-connected curves which interpolate
given data; after backward translation via Ψ we get piecewise canal
surface that is G1 at the joins. Of course, the natural question is
which curves are useful for this operation. The problematic is dis-
cussed in many details e.g. in [1], [2], [5] — if y(t) is a conic section
then the corresponding canal surface is a general cyclide and if y(t)
is a plane section of a hypercone tangent to Σ (i.e. a special conic
section) then the corresponding canal surface is a Dupin cyclide as it
was discussed in the previous section.
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5 Conclusion
In this short contribution some applications of the projective model of
Möbius geometry were discussed. The main idea is to transfer given
problem into 4-dimensional space of pentaspherical coordinates and
there to manipulate it. Future work will be oriented on the appli-
cation of rational extended stereographic projection and its inverse
(both are rational mappings) on construction of rational parametriza-
tions of special canal surfaces, eventually on construction of rational
blending surfaces.
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