
Space Complexity and LOGSPACE

Michal Hanzlík∗

Abstract

This paper deal with the computational complexity theory, with
emphasis on classes of the space complexity. One of the most impor-
tant class in this field is LOGSPACE. There are several interesting
results associated with this class, namely theorems of Savitch and Im-
merman – Szelepcsényi. Techniques that are used when working with
LOGSPACE are different from those known from the time complexity
because space, compared to time, may be reused. There are many
open problems in this area, and one will be mentioned at the end of
the paper.

1 Introduction

Computational complexity focuses mainly on two closely related topics. The
first of them is the notion of complexity of a “well defined” problem and the
second is the ensuing hierarchy of such problems. By “well defined” problem
we mean that all the data required for the computation are part of the input.
If the input is of such a form we can talk about the complexity of a problem
which is a measure of how much resources we need to do the computation.
What do we mean by relationship between problems? An important tech-
nique in the computational complexity is a reduction of one problem to an-
other. Such a reduction establish that the first problem is at least as difficult
to solve as the second one. Thus, these reductions form a hierarchy of prob-
lems.

∗Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia
in Pilsen, Univerzitní 22, Plzeň, mikeus@kma.zcu.cz

1.1 Representation

In mathematics one usually works with mathematical objects as with abstract
entities. This is not the case of computational complexity. For our purposes
we have to define how data will be represented to be able to find a feasible
computational model that will handle them.

Definition 1.1. A string is a finite binary sequence. For n ∈ N, we denote by
{0, 1}n the set of all strings of length n and call its elements the n−bit strings.
The set of all strings is denoted by

{0, 1}∗ :=
⋃

n∈N
{0, 1}n.

For x ∈ {0, 1}∗, we denote the length of x by |x|.

Definition 1.2. Let S ⊆ {0, 1}∗. A function g : {0, 1}∗ −→ {0, 1} solves the
decision problem of S if for every x it holds that g(x) = 1 if and only if x ∈ S.

From the definition of the decision problem it is clear that the function g is
actually the characteristic function of the set S.
Closely related to a decision problem is a notion of a language.

Definition 1.3. A language is a set (possibly infinite) of strings.

1.2 Turing Machine

Before we give a detailed definition it might be useful to take a look at a
brief overview. For that we will consider only deterministic Turing machines
(TM). Our TM will act as acceptor, which means that it will accept, reject
or loop on every input. In general TMs may have several read/write work
tapes or dedicated input read-only and output write-only tapes but it can be
proven that they all have equivalent computational capabilities as one-tape
TM.
We will define a one-tape deterministic TM as a 9-tuple

M = (Q,Σ,Γ,`,t, δ, s, t, r),

where

• Q is a finite set of states;

• Σ is a finite input alphabet (in our case Σ = {0, 1});

• Γ is a finite tape alphabet and Σ ⊂ Γ;

• `∈ Γ− Σ is the left end-marker ;

• t ∈ Γ− Σ is the blank symbol;

• δ : Q× Γ −→ Q× Γ× {−1, 0, 1} is the transition function;

• s ∈ Q is the start state;

• t ∈ Q is the accept state;

• r ∈ Q is the reject state (r 6= t).

` 0 1 1

Q

` 0 1 1

` 0 1

. . .

. . .

. . .

1 1 10 0 t

t t t t t t

t t t t t00

Input tape (read only)

Work tape (read/write)

Output tape (write only)

Figure 1.1: Schema of a three-tape Turing machine.

The most important of these is the transition function which describes how
the TM processes the input. Formally it is defined as follows. For p, q ∈ Q,
a, b ∈ Σ and d ∈ {−1, 0, 1} we have δ(p, a) = (q, b, d). This says that if the
state is p and head is scanning symbol a then TM writes b, moves the head
in direction d, and enters state q. There are two more criteria we require
from the transition function. First the TM should never leave its work tape
so for all p ∈ Q there exist q ∈ Q such that δ(p,`) = (q,`, 1). A second
requirement is that whenever a TM enters an accept or a reject state it
never leaves it so for all b ∈ Γ there exist c, c′ ∈ Γ and d, d′ ∈ {−1, 0, 1}
such that δ(t, b) = (t, c, d) and δ(r, b) = (r, c′, d′). At the beginning of every
computation a TM is in state s (a start state). Then it may either enter an

infinite loop or end in one of the states t or r that stand for accept and reject,
respectively. By entering these two states a TM halts the computation.
We are now going to describe what are deterministic and non-deterministic
computational models. The difference between the former and the latter is in
the transition function. The description above is of a deterministic TM. For
a non-deterministic model the transition function δ is no longer a function but
a relation ∆ ⊆ (Q\{t, r}×Γ)×(Q×Γ×{−1, 0, 1}). This means that there is
not a uniquely determined consecutive state but a finite set of possible next
states. These choices create a rooted directed tree structure where root is
a start state s (compare with an oriented path structure for a deterministic
case). An accepting (resp. rejecting) computation of a non-deterministic TM
is a path in the tree structure that starts in the root s and ends in one of
the leafs of the tree that corresponds to the state t (resp. r). An input x
(a finite string) is accepted by TM if there exists an accepting computation
(TM halts when in state t).

1.3 Time Complexity

When using Turing machines as a model of computation we are able to
measure the number of steps taken by the algorithm on each possible input.
Such a function, denote it tA : {0, 1}∗ −→ N, is called the time complexity
of algorithm A. To make this definition reasonable we will focus only on
algorithms that halt on every input (i.e. for every input x ∈ {0, 1}∗, tA(x) is
finite number).
For our purposes we will be mainly interested in a dependence between the
size of the input and number of steps of algorithm A. Thus, we will consider
TA : N −→ N defined by TA(n) := maxx∈{0,1}n {tA(x)}. Notice that TA repre-
sents time complexity of worst case input of length n ∈ N for the algorithm
A.
So far we defined the time complexity of an algorithm. The time complexity
of a problem is time complexity of “the fastest” algorithm that solves it.
For two algorithms A and B, the functions TA and TB does not have to be
comparable so we actually compare O(TA) and O(TB). It is obvious that the
time complexity of a problem may depend on a model of computation (TM,
RAM, ...).

1.4 Space Complexity

Another measure of efficiency is the use of space (or memory). A natural
lower bound for time complexity is a linear function in size of the input (to
process each element of the input at least once) but space can be reused
during the computation so some of the most interesting space complexity
classes are actually those using only a logarithmic amount of work space.
Time and space efficiency measure is in conflict so one usually has to sacrifice1

time when enhancing space complexity and the other way around.
The importance of space complexity is especially in the theoretical realm but
we should note that there are several results which show a close connection
between both criteria of complexity.
In subsection 1.2 we defined a TM as a model of computation and used it to
measure the time complexity of an algorithm. To measure space complexity
we will have to use a slightly more complicated computational model. This is
mainly because we want to separate the sizes of input and output data from
intermediate storage required by the computation. To do so we will use a 3-
tape TM with one input tape which is read only, one output tape which is write
only and a work tape which is read/write (see Figure Figure 1.1). We define
the space complexity of a machine M on input {0, 1}n, denoted as sM(n), as
a maximum of number of cells on a work tape used during a computation.
Similarly the space complexity of an algorithm A will be defined as SA(n) :=
maxx∈{0,1}n {sA(n)} and the space complexity of a problem will be again
defined as a space complexity of the most space-efficient algorithm that solves
it. Notice that as in case of time complexity a function in n which can be
even a constant function.
We will further assume, when considering space complexity, that a TM in
Figure Figure 1.1 never scans the input tape beyond the given input (i.e.
there is a special symbol at the end of every input) and it also writes into
each output tape cell at most once (this can be assured for a small additive
penalty to the space complexity of a TM).

1.5 Complexity Classes

A complexity class is defined by three main criteria: model of computation
(uniform or non-uniform), type of computational problem (decision, search,

1In the sense of substituting one resource for the other.

promise2, etc.) and resource bound (function of input length). Most of the
time we will consider Turing machines as a model of computation and we
will work with decision problems. The resource bound criterion will be more
interesting.
We recognize four general complexity classes. Denote by T : N −→ N and
S : N −→ N two integer functions that we will use as a time and space
complexity bound, respectively, and let L(M) be the language accepted by
TM M . We can now define

DTime(T (n)) := {L(M)|M is a deterministic TM running in timeT (n)} ,
NTime(T (n)) := {L(M)|M is a non-deterministic TM running in timeT (n)} ,
DSpace(S(n)) := {L(M)|M is a deterministic TM running in spaceS(n)} ,
NSpace(S(n)) := {L(M)|M is a non-deterministic TM running in spaceS(n)} .

1.5.1 Properties

The inclusions DTime(T (n)) ⊆ NTime(T (n)) and DSpace(S(n)) ⊆ NSpace(S(n))
are trivial and follow from the fact that a deterministic TM is a special case
of a non-deterministic one.
The following theorem points out some basic relations between time and
space complexity classes.

Theorem 1.4. Let T (n) ≥ n and S(n) ≥ log n. Then

DTime(T (n)) ⊆ DSpace(T (n)),
NTime(T (n)) ⊆ NSpace(T (n)),
DSpace(S(n)) ⊆ DTime(2O(S(n))),
NSpace(S(n)) ⊆ NTime(2O(S(n))).

In the following text we will mainly focus on the space complexity classes as
they are the main topic of the paper. One of the most interesting space com-
plexity classes is the class DSpace(O(log n)), usually denoted as LOGSPACE
(or L). It contains a variety of natural computational problems that we
will mention in the following chapter. Its non-deterministic equivalent is
denoted as NL. When considering space complexity, one should also men-
tion class PSPACE = ∪c∈NDSpace(nc) and its non-deterministic variant

2A promise problem is a decision problem where the input is promised to belong to a
subset of all possible inputs.

is called NPSPACE . From the previously mentioned results follows that
NP ⊆ PSPACE .
In 1970, a breakthrough in the study of space complexity was achieved by
Walter Savitch [Sav70].

Theorem 1.5 (Savitch, 1970). Let S(n) ≥ log n. Then

NSpace(S(n)) ⊆ DSpace(S(n)2).

From Savitch’s result it immediately follows that PSPACE = NPSPACE .
Proving the similar equivalence for time complexity classes seems to be sig-
nificantly more difficult.
Before we continue with the next result we define classes of complement
problems.

Definition 1.6. Let C be a class of decision problems. The complement class
denoted by co-C is a class of decision problems such that S ∈ C if and only
if {0, 1}∗\S ∈ co-C.

Another important and more recent result was proven independently by Im-
merman and Szelepcsényi in 1987 [Imm88, Sze88]. It states the following.

Theorem 1.7 (Immerman, Szelepcsényi, 1987). For S(n) ≥ log n,

NSpace(S(n)) = co-NSpace(S(n)).

Immerman and Szelepcsényi actually proved that NL = co-NL but by us-
ing a “padding argument”3 the result can be extended to any other space
complexity non-deterministic class above NL.

2 Logarithmic Space

Complexity classes using only logarithmic work space to process an input
became a subject of interest because the space of size log n is just enough
to maintain a counter that may store a number from 0 to n and hence it is
possible to remember position of head on input and output tape. We actually
allow usage of O(log n) space which means that the computational model may

3Padding is a technique for showing that if some complexity classes are equal, then
some other classes possessing more computational resource are also equal by extending
accepting language with new symbols. For details see [AB09].

have a constant number of counters counting from 0 to a polynomial in n.
This is enough to solve a variety of natural problems such as adding and
multiplying natural numbers. It also gives rise to a widely used reduction
called a log-space reduction that is helpful when working with classes below
P .
Are there any problems that might be solved using sub-logarithmic amount of
work space? A simple problem that requires only constant space is deciding
if an integer in binary encoding is even or odd. It is quite surprising that
there are problems that require sub-logarithmic space but will not do with
constant space. The hierarchy of classes is as follows:

DSpace(O(1)) (DSpace(O(log log n)) (L ⊆ P .

The last inclusion follows from the fact that from Theorem 1.4 it holds that

DSpace(S(n)) ⊆ DTime(2O(n))

and thus we have

L = DSpace(O(log n)) ⊆ DTime(2O(log n)) = DTime(nO(1)) = P .

A similar relation holds also for the non-deterministic case (i.e., NL ⊆ NP).
The question whether L is a proper subset of P or the equality holds is one
of the most important open questions in complexity theory4.

2.1 Composition Lemmas

There are two important composition lemmas that show how to compose
Turing machines preserving the space bound restriction. For now assume we
compose only two TMs where the second one uses the original input together
with the output of the first TM as its input. An easy case is when output of
first TM has length at most log n, because we can emulate its output tape by
additional work tape and this will still fulfill the space bound requirement.
We call such composition a naive composition.

Lemma 2.1 (Naive composition). Let f1 : {0, 1}∗ −→ {0, 1}∗ and f2 :
{0, 1}∗ × {0, 1}∗ −→ {0, 1}∗be computable in space s1 and s2, respectively.
Then the function f defined by f(x) := f2(x, f1(x)) is computable in space s
such that

s(n) = s1(n) + s2(n+ l(n)) + l(n), (2.1)
where l(n) = maxx∈{0,1}n {|f1(x)|}.

4The same question for non-deterministic classes (i.e., NL (NP) is also unresolved.

Lemma 2.1 defines composition where no space optimization is used. The
first term in (Equation 2.1) stands for the space required by the first TM that
on input of size n uses s1(n) work space and produces output of size at most
l(n). The second TM has access to the original input as well as to the output
produced by the first TM (which is also included into the space complexity
of the composition) so the whole input for f2 has size n + l(n), thus the
overall space required to compute f2 is s2(n+ l(n)). One can achieve a simple
improvement by reusing the work space of f1. The space complexity of such a
composition would be s(n) = max(s1(n), s2(n+l(n)))+l(n). For our purposes
such an improvement would only decrease a constant in (Equation 2.1) and
so we do not distinguish between these two approaches.
The second composition lemma is of major importance for us because it is
one of the main tools for designing space bounded algorithms.

Lemma 2.2 (Emulative composition). Let f1, f2, s1, s2, l and f be as in
Lemma 2.1. Then f is computable in space s such that

s(n) = s1(n) + s2(n+ l(n)) +O(log(n+ l(n))). (2.2)

As an illustration of emulative composition consider a simple example. Let
f(e) be a function that assigns weights to the edges of a graph G that is
acyclic with bounded degree and let s, t be vertices of G. Our task is to find
a path of minimum weight between s and t. We obviously cannot remember
values of function f for each edge of G because that would require space at
least linear in the size of the input. So whenever an algorithm for finding
a minimal path needs the weight of an edge e, the function f(e) has to be
invoked to provide such information. The function f is computed by P in
Figure Figure 2.1 and the weights of the edges are exactly the information
“stored” on the virtual device that together with the original input forms the
input for Q.
Lemma 2.2 is described by Figure Figure 2.1. The terms s1(n) and s2(n)
in (Equation 2.2) have exactly the same meaning as in Lemma 2.1. The
last term is more interesting. It is the size of a constant number of auxiliary
counters that store positions on the virtual tape. Each of the counters store a
number from 0 to n+ l(n) so in the binary encoding one requires log(n+ l(n))
bits to store such a number and that is where the last term in (Equation 2.2)
comes from. If Q requests a bit in a cell at position ≤ n, it reads it from
original input; otherwise, it asks P to recompute the requested bit. Hence
we do not have to remember the output of P but every time Q asks for a
part of its output, it is recomputed and we only need an auxiliary counter
(of logarithmic size) to remember a position on the output tape of P . Such

0 1 1

P

` 0 1 1

` 0 1

. . .

. . .

. . .

1 1 10 0 t

t t t t t t

0 t t t t11

Input tape (read only)

P -Work tape (read/write)

Virtual tape

Q

` 1 1 1

` 0 1

. . .

. . .

0 0 1 t t t

t t t t t00

Q -Work tape (read/write)

Output tape (write only)

`

Auxiliary counters

` 1 1 1 . . .

Figure 2.1: Emulative composition. Tapes shown in bold are considered
when determining the space complexity of the composition. The virtual tape
does not store any data, thus it does not occur in (Equation 2.2).

a virtual tape does not contain any data on its own so it is not included in
the space complexity of the composition.
The main difference when applying such an approach is that we first call
Q that itself makes calls to P whenever it requires additional information
other than that in original input. It is an essence of most algorithms using
logarithmic space because it removes the need to remember anything that can
be computed from the original input. Even though it provides a very useful
tool for log-space computations it has its limits. It is possible to do only
a constant number of such compositions. For every emulative composition
one has to add a constant number of counters and by performing, say, log n
emulative compositions we end up with space complexity log2 n.

2.2 NL vs. UL

NL is a class of problems accepted by non-deterministic logarithmic space
bounded TMs. Non-determinism in space complexity has several features.

First, the class NL is closed under complement as states Theorem 1.7. It
is widely believed that no such property holds for time complexity classes
(especially NP). Second, it is known that the whole NL is contained in
DSpace(O(log2(n))) by Theorem 1.5.
The unambiguous logarithmic space complexity class (denoted UL) is a class
of decision problems solvable by a non-deterministic TM M such that

1. if an input x ∈ L(M), exactly one computation path accepts,

2. if an input x /∈ L(M), all computation paths reject.

Unambiguity is a natural restriction of non-deterministic power. By the
definition, UL is a restricted version ofNL so a trivial inclusion is UL ⊆ NL.
It is widely believed that whole non-determinism in logarithmic space is
captured in UL and hence UL = NL.

Conjecture 2.3. NL = UL.

A fundamental problem contained in NL is the connectivity problem in
general directed graphs denoted

STCONN = {G, s, t | there is a directed path from s to t in G}.

Theorem 2.4. STCONN is complete for NL under many-to-one log-space
reductions.

To show that NL is contained in another complexity class, it is enough to
show that STCONN can be solved in it. Hence to prove Conjecture 2.3 one
could show that STCONN ∈ UL.

3 Conclusion

In the first part of this paper we gave an overview of some basic facts from
computational complexity theory. The next part was devoted to the loga-
rithmic space complexity classes and to an open problem whether NL = UL.
Many open problems remain in this field and it would be interesting to in-
vestigate them further.

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A

Modern Approach. Cambridge University Press, 2009.

[Gol08] Oded Goldreich. Computational complexity: a conceptual perspec-
tive. Cambridge University Press, 2008.

[Han12] Michal Hanzlík. Spatial complexity of graph problems. Diploma
thesis, University of West Bohemia in Pilsen, 2012.

[Imm88] Neil Immerman. Nondeterministic space is closed under comple-
mentation. SIAM J. Comput., 17(5):935–938, October 1988.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM,
55(4):17:1–17:24, September 2008.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and de-
terministic tape complexities. Journal of Computer and System
Sciences, 4(2):177 – 192, 1970.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for non-
deterministic automata. Acta Informatica, 26:279–284, 1988.

	1 Introduction
	1.1 Representation
	1.2 Turing Machine
	1.3 Time Complexity
	1.4 Space Complexity
	1.5 Complexity Classes

	2 Logarithmic Space
	2.1 Composition Lemmas
	2.2 NL vs. UL

	3 Conclusion

