vlastní články
Aleš Nekvinda - Publications
Papers in Journals
-
[1] A. Nekvinda and L. Zajíček:
A simple proof of Rademacher theorem. Časopis pro pěstování matematiky, 113,
no. 4, (1988), 337--341
-
[2] A. Nekvinda and L. Pick: A note on the Dirichlet problem for the
elliptic linear operator in Sobolev spaces with weight $d^p_{\varepsilon,M}$.
Comment. Math. Univ. Carolinae 29, no. 1 (1988), 63-71
-
[3] A. Nekvinda and L. Pick: On traces on the
weighted Sobolev spaces $H^{1,p}_{\varepsilon,M}$.
Funct.
Approx. Comment. Math. 20 (1992), 143-151
-
[4] A. Nekvinda: Characterization of traces of the
weighted Sobolev space
$W^{1,p}(\Omega,d^{\varepsilon}_{M})$ on $M$.
Czechoslovak Math. J. 43, no. 4 (1993), 695-711
-
[5] A. Nekvinda: Decomposition of the weighted
Sobolev space
$W^{1,p}(\Omega,d^{\varepsilon}_{M})$ and its traces.
Czechoslovak Math. J. 43, no. 4 (1993), 713-722
-
[6] J. Lang and A. Nekvinda: Traces of a
weighted Sobolev space in a singular case.
Czechoslovak Math. J. 45,4 (1995), 639-657
-
[7] J. Lang and A. Nekvinda: A difference
between continuous and absolutely continuous
norms in Banach function spaces.
Czechoslovak Math. J. 47, no. 2 (1997), 221-232
-
[8] D. E. Edmunds, J. Lang and A. Nekvinda: On $L^{p(x)}$ norms.
Proc. R. Soc. Lond. A. 445,1981 (1999), 219-225
-
[9] J. Lang, A. Nekvinda and J. Rákosník: Continuous norms and absolutely continuous norms in Banach function spaces are not the same.
Real Anal. Exch. 26, no. 1 (2001), 345-364
-
[10] D. E. Edmunds and A. Nekvinda: Averaging operators on $l^{\{p_n\}}$ and $L^{p(x)}$.
Math. Inequal. Appl. 5,2 (2002), 235-246
-
[11] A. Nekvinda: Equivalence of $\ell^{\{p_n\}}$ norms and shift operators.
Math. Inequal. Appl. 5, no. 4 (2002), 711-723
-
[12] A. Nekvinda and L. Zajíček: G\^ ateaux differentiability of Lipschitz functions via
directional derivatives.
Real Anal. Exch. 18, no. 4 (2002-2003), 287-320
-
[13] J. Lang, O. Mendez and A. Nekvinda: Asymptotic behavior of the approximation numbers of the Hardy-type operator from $L^p$ into $L^q$
( 1< q \le 2, 2\le p \le q < \infty \mbox{ and } 1<p\le 2 \le q < \infty$).
J. Inequal. Pure Appl. Math. 5,1 (2004), elektronická forma na adrese http://jipam.vu.edu.au/article.php?sid=370
-
[14] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$.
Math. Inequal. Appl. 7, no. 2 (2004), 255-265
-
[15] A. Nekvinda and L. Zajíček: Extensions of real and vector
functions of one variable which preserve differentiability. Real Anal. Exch. 30, no. 2, 2004/2005, 435-450
-
[16] A. Nekvinda: Imbeddings between discrete weighted Lebesgue spaces.
Math. Inequal. Appl. 10, no. 1 (2007), 165-172
-
[17] A. Nekvinda: A note on maximal operator on $\ell^{\{p_n\}}$ and
$L^{p(x)}(\mathbb{R})$. J. Funct. Spaces Appl. 5, no. 1 (2007), 49-88,
-
[18] P. Gurka, P. Harjulehto and A. Nekvinda: Bessel potential space with variable exponent.
Math. Inequal. Appl. 10, no. 3 (2007), 661-676
-
[19] A. Nekvinda: Maximal operator on variable Lebesgue spaces for almost monotone radial exponent.
Journal of Mathematical Analysis and Applications 337, no. 2 (2008), 1345-1365
-
[20] D. E. Edmunds, J. Lang and A. Nekvinda: Some $s-$numbers of an integral operator of Hardy type on
$L^{p(.)}$ spaces. Journal of Functional analysis 257, no. 1, 2009
-
[21] A. Nekvinda and L. Pick: Optimal estimates for the Hardy averaging operator. Math. Nachr. 283, no. 2 (2010), 262-271
-
[22] A. Nekvinda : A note on one-sided maximal operator in $L^{p(.)}(\mathbb{R})$. Mathematical Inequalities and Applications 13, no.4 (2010), 887-897
-
[23] A. Nekvinda and O. Zindulka: A Cantor set in the plane
that is not $\sigma$-monotone
. Fundamenta Mathematica 213,
(2011), 221-232
-
[24] A. Nekvinda and L. Pick : Duals of optimal spaces for the Hardy averaging operator. Z. Anal. Anwend., 30, (2011), 435-456
-
[25] A. Nekvinda and O. Zindulka: Monotone metric spaces
. Order: Volume 29, Issue 3 (2012), Page 545-558
-
[26] Y. Mizuta, A. Nekvinda and T. Shimomura : Hardy averaging operator on generalized Banach function spaces and duality
. Z. Anal. Anwend. 32, no. 2 (2013), Page 233-255
-
[27] A. Nekvinda, D. Pokorný and V. Vlasák : Some results on monotone metric spaces.
J. Math. Anal. Appl. 413, no 2 (2014), 999-1016
-
[28] O. Zindulka, M. Hrušák, T. Mátrai, A. Nekvinda and V. Vlasák : Properties of functions with monotone graphs.
Acta Math. Hungar. 142, no 1 (2014), 1-30
-
[29] Y. Mizuta, A. Nekvinda and T. Shimomura : Optimal estimates for the fractional Hardy operator.
Studia Math. 227, no. 1 (2015), 1-19
-
[30] D. E. Edmunds, J. Lang and A. Nekvinda : Estimates of s-numbers of a Sobolev embedding involving spaces of variable exponent.
J. Math. Anal. Appl. 430, no. 2 (2015), 1088–1101
-
[31] Michal Beneš, Aleš Nekvinda and Manoj Kumar Yadav : Multi-time-step Domain Decomposition Method with Non-matching Grids for Parabolic Problems.
Appl. Math. Comput. 267, (2015), 571–582
-
[32] Aleš Nekvinda: A Cantor set in the plane and its monotone subsets.
Acta Mathematica Hungarica 148, no. 1 (2016),
43-55
-
[33] David E. Edmunds and A. Nekvinda: Characterisation of zero trace functions in variable exponent Sobolev spaces
.
Math. Nachr. 209, no. 14-15 (2017),
2247–2258
-
[34] David E. Edmunds and A. Nekvinda: Characterisation of zero trace functions in higher-order spaces of Sobolev type
.
J. Math. Anal. Appl. 459, no. 2 (2018),
879–892
-
[35] Y. Mizuta, A. Nekvinda and T. Shimomura: Optimal estimates for the fractional Hardy operator on variable exponent Lebesgue spaces
. Math. Inequal. Appl. 22, no. 2 (2019),
445–462
-
[36] L. Aizenberg, E. Liflyand and A. Nekvinda: Dual complements for domains of $\mathbb{C}^n$.
Math. Inequal. Appl. 22, no. 2 (2019), 553–564
-
[37] A. Nekvinda: Maximal operator on variable Lebesgue spaces with radial exponent.
J. Math. Anal. Appl. 477 (2019), no. 2, 961–986
-
[38] A. Fiorenza, A. Gogatishvili, A. Nekvinda, J. M. Rakotoson: Remarks on compactness results for variable exponent spaces $L^{p(·)}$.
J. Math.Pures Appl. 157 (2022), 136–144
-
[39] D. E. Edmunds, A. Gogatishvili and A. Nekvinda: Almost-compact and compact embeddings of variable exponent spaces.
Studia Math. 268 (2023), no 2, 187–211
-
[40] J. Lang and A. Nekvinda: Embeddings between Lorenz sequence spaces are strictly but not finitely strictly singular.
Studia Math. 272 (2023), no. 1, 35-57
-
[41] A. Nekvinda and H. Turčinová: Characterization of functions with zero traces via the
distance function and Lorentz spaces. J.
Math. Anal. Appl. 529 (2024), no 2, 28 pp
Recent preprints
-
[42] A. Nekvinda and D. Peša: On the properties of quasi-Banach
function spaces.
submitted
-
[43] L. Gaynutdinová, M. Ladecký, A. Nekvinda, Ivana Pultarová and J. Zeman: Efficient numerical method for reliable upper and lower
bounds on homogenized parameters.
submitted
-
[44] J. Lang and A. Nekvinda and D. Peša: Embeddings between sequence variable Lebesgue spaces, strict and finitely strict singularity.
submitted
Proceedengs of conferences
-
[45] L. Diening, P. Hasto and A. Nekvinda: Open problems in variable exponent Lebesgue and Sobolev spaces.
FSDONA 2004 Proceedings of the conference held in Milovy, May 27 - June 2, 2004, Mathematical Institute AS CR, Praha 2005
Back to the main page