The second (make-up) test MT02: Specimen 1 / 6

Question 1 (8 p.) The equation of the tangent plane to the surface $z = \sqrt{y \sin x}$ at the point $\left[\frac{1}{6}\pi, 1, \frac{1}{2}\sqrt{2}\right]$ is

a)
$$6x + y + 2z - 1 - \sqrt{2} - \pi = 0$$

b)
$$2\sqrt{3}x + 2y - 4\sqrt{2}z + 2 - \frac{\pi}{\sqrt{3}} = 0$$

c)
$$\frac{6}{\pi}x - y + \sqrt{2}z - 1 = 0$$

d)
$$\frac{6}{\pi}x + 2y - \sqrt{2}z - 2 = 0$$

e)
$$6x - y - \sqrt{2}z + 2 - \pi = 0$$

Question 2 (8 p.) The function $f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$ has at the point $\left[-\frac{5}{3},0\right]$

- a) a saddle point
- b) a non-strict local maximum
- c) a non-strict local minimum
- d) a strict local minimum
- e) a strict local maximum

Question 3 (4 p.) The tangent line of the curve $xe^y + y - 1 = 0$ at its point [1,0] has the equation

a)
$$x + 2y - 1 = 0$$

b)
$$2x - y - 2 = 0$$

c)
$$x - 2y - 1 = 0$$

d)
$$2x + y - 2 = 0$$

e)
$$x + y - 1 = 0$$

Question 4 (4 p.) A function x = x(y) is defined implicitly by the equation $y^2 - x^3 + y^2x - 1 = 0$ and a condition x(1) = 0. Then x'(1)

- a) is equal to 0
- b) is equal to -1
- c) is equal to $-\frac{1}{2}$
- d) does not exists
- e) is equal to -2

Question 5 (4 p.) The equation of the normal line to the surface given by the equation $x^2 - 2y^2 + 2z^2 = 33$ at the point [1, 0, 4] is

- a) $X = [1, 0, 4] + t(1, 1, 1), t \in \mathbf{R}$
- b) $X = [1, 0, 4] + t(1, 8, 1), t \in \mathbf{R}$
- c) $X = [1, 0, 4] + t(1, 4, 8), t \in \mathbf{R}$
- d) $X = [1, 0, 4] + t(1, 0, 8), t \in \mathbf{R}$
- e) $X = [1, 0, 4] + t(0, 1, 8), t \in \mathbf{R}$

Question 6 (8 p.) The lengths of the sides of a rectangle change as follows: one increases from 6 m increases by 2 mm, the other decreases from 8 m by 5 mm. The length of a diagonal of the rectangle is also changed. Using the differential of the first order, the change in length of the diagonal is approximately

- a) 2.8 mm
- b) $-4.2 \, \text{mm}$
- c) $-0.5 \, \text{mm}$
- d) $-2.8 \,\mathrm{mm}$
- e) 3.3 mm

The second (make-up) test MT02: Specimen 2 / 6

Question 1 (8 p.) The normal to the curve $\sin xy - \cos \frac{x}{y} - 1 = 0$ at its point $\left[\frac{1}{2}\pi, 1\right]$ has the equation

a)
$$x + y - \frac{1}{2}\pi = 0$$

b)
$$\pi x + 2y - 2 - \frac{1}{2}\pi^2 = 0$$

$$c) 2x + \pi y - 2\pi = 0$$

d)
$$2x - \pi y = 0$$

e)
$$x + \pi y - \frac{3}{2}\pi = 0$$

Question 2 (8 p.) The function $f(x,y) = x^2 + y^3 - 2xy$ has at the point $\left[\frac{2}{3}, \frac{2}{3}\right]$

- a) a non-strict local minimum
- b) a non-strict local maximum
- c) a saddle point
- d) a strict local minimum
- e) a strict local maximum

Question 3 (4 p.) The equation of the normal to the surface given by $z = \arcsin xy$ at the point $\left[\frac{1}{2},0,0\right]$ is

a)
$$X = \left[\frac{1}{2}, 0, 0\right] + t(0, 1, -2), \ t \in \mathbf{R}$$

b)
$$X = \left[\frac{1}{2}, 0, 0\right] + t(2, 1, -2), \ t \in \mathbf{R}$$

c)
$$X = \left[\frac{1}{2}, 0, 0\right] + t(2, -1, 2), \ t \in \mathbf{R}$$

d)
$$X = \left[\frac{1}{2}, 0, 0\right] + t(2, 0, -1), \ t \in \mathbf{R}$$

e)
$$X = \left[\frac{1}{2}, 0, 0\right] + t(2, 1, 0), \ t \in \mathbf{R}$$

Question 4 (4 p.) The maximal domain of definition of the function $f(x,y) = \sqrt{(x+1)(y-1)}$ is the set

a)
$$\langle -1, +\infty \rangle \times \langle 1, +\infty \rangle$$

b)
$$(-\infty, -1) \times (-\infty, 1)$$

c)
$$\{\langle -1, +\infty \rangle \times \langle 1, +\infty \rangle\} \cup \{(-\infty, -1) \times (-\infty, 1)\}$$

d)
$$\{\langle \frac{1}{2}, +\infty \rangle \times (-\infty, 2)\} \cup \{(-\infty, \frac{1}{2}) \times \langle 2, +\infty \rangle\}$$

e)
$$(-\infty, \frac{1}{2}) \times (-\infty, 2)$$

Question 5 (4 p.) The derivative of function $f(x,y) = \ln \frac{y}{x}$ at point P = [1,1] in the direction of a vector $\mathbf{u} = (u_1, u_2), \ u_2 > 0$, where \mathbf{u} is the normal vector of the tangent line to the curve $x^2 + y^2 - 2x = 0$ at the point P, is equal to

- a) $\frac{1}{3}$
- b) $-\frac{1}{3}$
- c) 1
- d) $\frac{1}{2}$
- e) $-\frac{1}{2}$

Question 6 (8 p.) Using the differential, compute the approximate increment of function $f(x,y) = \operatorname{arctg} \frac{y}{x}$, if x increases from 2 to 2.1 and y decreases from 3 to 2.5.

- a) -3.2
- b) 0.1
- c) -0.1
- d) 0.7
- e) 2.1

The second (make-up) test MT02: Specimen 3 / 6

Question 1 (8 p.) The lengths of the sides of a cuboid change as follows: one increases from $6 \,\mathrm{m}$ by $2 \,\mathrm{mm}$, the second decreases from $8 \,\mathrm{m}$ by $4 \,\mathrm{mm}$, the third increases from $5 \,\mathrm{m}$ by $3 \,\mathrm{mm}$ The length of a body diagonal of the cuboid is also changed. Using the differential of the first order, the change in length of the body diagonal is approximately

- a) 2.8 mm
- b) $-4.2 \, \text{mm}$
- c) 0.14 mm
- d) $-2.8 \,\mathrm{mm}$
- e) 0.33 mm

Question 2 (8 p.) The function $f(x,y) = 3x^2 + 2y^2 - 3x^2y$ has at the point [0,0]

- a) strict local minimum
- b) a saddle point
- c) strict local maximum
- d) a non-strict local minimum
- e) a non-strict local maximum

Question 3 (4 p.) A function y = y(x) is defined implicitly by the equation $x \sin y - \cos y + \cos 2y = 0$ and a condition $y(1) = \frac{1}{2}\pi$. Then y'(1)

- a) is equal to 0
- b) is equal to $-\frac{1}{2}$
- c) is equal to $-\frac{1}{3}$
- d) does not exists
- e) is equal to -1

Question 4 (4 p.) The derivative of function $f(x,y) = \operatorname{arctg} \frac{y}{x}$ at point P = [1,1] in the direction of a vector $\mathbf{u} = (u_1, u_2), \ u_2 > 0$, where \mathbf{u} is the normal vector of a tangent line of the curve $x^2 + y^2 - 2x = 0$ at the point P, is equal to

- a) $\frac{1}{3}$
- b) $-\frac{1}{3}$
- c) 1
- d) $\frac{1}{2}$
- e) $-\frac{1}{2}$

Question 5 (4 p.) The maximal domain of definition of the function $f(x,y) = \frac{1}{\sqrt{(x+2)(y-1)}}$ is the set

- a) $\langle -1, +\infty \rangle \times \langle 2, +\infty \rangle$
- b) $(-\infty, -2) \times (-\infty, 1)$
- c) $\{(-\infty, -2) \times (-\infty, 1)\} \cup \{(-2, \infty) \times (1, \infty)\}$
- d) $\{\langle \frac{1}{2}, +\infty \rangle \times (-\infty, 2)\} \cup \{(-\infty, \frac{1}{2}) \times \langle 2, +\infty \rangle\}$
- e) $(-\infty, \frac{1}{2}) \times (-\infty, 2)$

Question 6 (8 p.) The equation of the tangent plane to the surface given by $z = \arctan(x+2y)$ at the point $\left[\frac{1}{3}, \frac{1}{3}, \frac{\pi}{4}\right]$ is

a)
$$6x + y + 2z - 1 - \sqrt{2} - \pi = 0$$

b)
$$x + 2y - 2z + \frac{\pi}{2} - 1 = 0$$

c)
$$\frac{\pi}{4}x - y + 2z - 1 = 0$$

d)
$$\frac{\pi}{4}x + 2y - 2z - 2 = 0$$

e)
$$6x - y - 2z + 2 - \pi = 0$$