Test 1 MT01: specimen 1 of 4

Otázka 1 (4 b.) Calculate $\lim_{x\to +\infty} \frac{x^2 \cdot e^{-1/x}}{1-3x^2}$.

- a) $-\frac{1}{3}$ b) $\frac{1}{3}$ c) 0 d) $+\infty$ e) $-\infty$

Question 2 (4 p.) Function $f(x) = x - 4 \cdot \sqrt{x} + 5$ on the interval $\langle 1, 9 \rangle$ has its global minimum

- at the point 1 a)
- b) at the point 2
- at the point 4
- d) at the point 9

e) nowhere

Otázka 3 (4 b.) A point of inflection to the graph of the function $f(x) = x^5 + 5x - 6$ is the point

- a) [0,0] b) [1,1] c) [1,2] d) [0,6] e) [0,-6]

Otázka 4 (8 b.) Calculate $\lim_{n\to\infty}\left[\sqrt{n}\cdot(\sqrt{n^4+2n}-\sqrt{n^4-2n})\right]$.

- a) 1

- b) $\frac{1}{2}$ c) 0 d) 2 e) $+\infty$

Test 1 MT01: specimen 2 of 4

Question 1 (4 p.) Function $f(x) = \sin^2 x$ on the interval $(\frac{1}{4}\pi, \pi)$ has its global maximum at the point

a) nowhere

b) at the point $\frac{1}{2}\pi$

c) at the point $\frac{1}{3}\pi$

d) at the point $\frac{3}{4}\pi$

e) at the point $\frac{2}{3}\pi$

Otázka 2 (4 b.) The slope of the normal to the graph of the function $f(x) = \arccos 3x$ at the intersection of the graph with the y-axis is equal to

a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{4}$ d) $\frac{1}{5}$ e) $\frac{1}{6}$

Otázka 3 (4 b.) Calculate $\lim_{n\to\infty} \frac{n^2(n+1)-1}{1+3n-1000n^2}$.

a) 0

b) -1 c) $-\frac{1}{1000}$ d) $\frac{1}{1000}$ e) $-\infty$

Question 4 (8 p.) The derivative of the function $f(x) = \ln\left(x + \sqrt{a^2 + x^2}\right)$ is the function

a) $f'(x) = \frac{1}{\sqrt{a^2 + r^2}}$

b) $f'(x) = \frac{a}{\sqrt{a^2 + x^2}}$

c) $f'(x) = \frac{a^2}{\sqrt{a^2 + x^2}}$

d) $f'(x) = \frac{a^2 + 1}{\sqrt{a^2 + x^2}}$

e) $f'(x) = \frac{a+2x}{\sqrt{a^2+x^2}}$

Test 1 MT01: specimen 3 of 4

Otázka 1 (4 b.) A point mass is moving along a straight line. The trajectory of its motion s (in meters) depends on time t (in seconds) through the relation $s = \frac{1}{4}t^4 - 4t^3 + 16t^2$. The velocity is zero (in meters per second) at the times (in seconds) equal

a) 0, 3, 6 b) 0, 4, 8 c) 0, 5, 10

d) 0, 3, 8 e) 0, 4, 6

Question 2 (4 p.) Compute $\lim_{x\to+\infty} \operatorname{tg}(\pi - \operatorname{arctg} x)$ if exists.

a) $+\infty$

b) $-\infty$

c) 0

d) 1

e) does not exist

Otázka 3 (4 b.) Function $f(x) = x^5 + 5x - 6$ is convex on the interval

a) (0,10) b) (-1,10) c) (-1,1) d) (-2,2) e) (-10,10)

Otázka 4 (8 b.) A tangent line to the graph of the function $f(x) = x^2 - 7x + 3$ is parallel to the straight line 5x + y - 3 = 0, if the x-coordinate of the touch point is equal to

a) 0

b) 1 c) -1 d) $\frac{1}{2}$ e) $-\frac{1}{2}$

Test 1 MT01: specimen 4 of 4

Otázka 1 (4 b.) Calculate $\lim_{n\to\infty}\frac{2^{3n}+3^{2n}}{8^{n+1}-2^n\cdot 5^n}\,.$

a) 0

b) 1

c) $\frac{1}{8}$ d) $+\infty$ e) $-\infty$

Otázka 2 (4 b.) Function $f(x) = e^{x}(x-1) - 5$ is decreasing on the interval

a) $\langle 0, 1 \rangle$

b) $\langle 1, 2 \rangle$ c) $\langle 2, 5 \rangle$ d) $\langle -3, \frac{1}{2} \rangle$ e) $\langle -3, -\frac{1}{2} \rangle$

Otázka 3 (4 b.) The tangent line to the graph of the function $f(x) = -x^2 + 2x$, which is parallel with the x-axis, has the touch point with the x-coordinate equal to

a) 4

b) 2

c) 1

d) 0

e) -1

Question 4 (8 p.) Function $f(x) = x^3 - 3x - 8$ on the interval (-2,3) has its global maximum

at the point -1

b) at the point 0

at the point 1

d) at the point 2

e) nowhere

 $\left[\begin{array}{cc} Correct\ answers: & a-e-c-e \end{array}\right]$