Předmět je věnován metodě velmi univerzální a účinné k řešení problémů obsahujících čas, tzv. evolučních problémů, zejména parciálních diferenciálních rovnic s časovou proměnnou. Tato metoda představuje moderní přístup k modelování a řešení inženýrských úloh. Tyto úlohy, lineární i nelineární, modelují děje v mnoha inženýrských oblastech, např. vedení tepla, kmitání, také v reologii apod. Studenti jsou seznámeni se všemi základy, nutnými k pochopení formulace a modelování inženýrských úloh, s přehledem metod řešení, dále s praktickými i teoretickými základy metod k řešení úloh závislých na čase, lineárních i nelineárních. Předmět je vhodný pro studenty jak magisterských, tak bakalářských studijních programů, zejména zajímajících se hlouběji o inženýrské děje, je veden přístupnou formou s množstvím příkladů a nevyžaduje žádné zvláštní předběžné znalosti. Jednotlivé pojmy jsou vykládány od úplných základů a výklad je přizpůsoben studentům, kteří si předmět zapíší. Znalosti studentů k ukončení předmětu prověřovány nejsou. Z předmětu je zápočet a dva kredity. Každý zájemce je vítán. Další informace na stránce vyučujícího.
Stochastické modely. Shoda dat se stochastickým modelem. Odhad parametrů modelu metodou maximální věrohodnosti a metodou momentů. Intervaly spolehlivosti. Závislost a korelovanost. Test nezávislosti v kontingenční tabulce. Kovarianční matice a její rozklad. Jednoduchá lineární regrese. Regrese s více vysvětlujícími proměnnými. Bayesevské metody.
Studenti se seznámí se základními numerickými postupy potřebnými pro inženýrské výpočty. Obsahem jsou následující témata. Diskrétní Fourierova transformace pro zjišťování zastoupení frekvencí v datech, Fourierova řada. Newtonova metoda pro řešení nelineárních úloh. Numerická integrace. Metoda konečných prvků, její stručné odvození včetně připomenutí pojmů z předmětu MA3, příklady použití pro jednoduché úlohy. Početní příklady k jednotlivým tématům jsou realizovány na počítači. Obsah předmětu je modifikován podle zájmu přihlášených studentů.
Cílem předmětu je doplnit základní znalosti a procvičit témata probíraná v základním kurzu Konstruktivní geometrie (Promítací metody, Mongeovo promítání, axonometrie, perspektiva. Konstruktivní fotogrammetrie. Základní metody osvětlení. Šroubovice a její aplikace, šroubové plochy. Kvadriky a jejich rovnice.). Obsah je modifikován podle zájmu přihlášených studentů.
Další informace naleznete v průběhu semestru na stránkách Centra Aktivního Učení.
Volitelný předmět navazující na povinné předměty KG01 a KGA1.
Cílem přednětu je umožnit studentům ČVUT seznámit se přístupnou formou s různorodými oblastmi moderní matematiky. Přednášejícími budou čeští i zahraniční matematici, kteří ve svém oboru dosáhli významných výsledků. Témata budou různorodá v souladu s cíli cyklu vybíraná napříč moderními oblastmi/podoblastmi matematiky (matematická logika a složitost algoritmů, matematické modelování, diferenciální rovnice, prostory funkcí, dynamické systémy, reálná analýza).
Další informace naleznete zde.
Opakování vybraných partií z předmětu Matematika 2G.
Další informace naleznete v průběhu semestru na stránkách Centra Aktivního Učení.
Opakování vybraných partií z předmětu Matematika 2.
Další informace naleznete v průběhu semestru na stránkách Centra Aktivního Učení.
Předmět seznámí studenty se základy programování v jednom z nejrozšířenějších moderních programovacích jazyků – Python. Studenti si osvojí základní programovací pojmy, struktury a pravidla Pythonu, ladění a řešení problémů a vytváření dokumentace.
Předmět je zaměřen na vybrané základy funkcionální analýzy, zejména základní vlastnosti Banachových a Hilbertových prostorů. V předmětu se studující seznámí se základy matematických pojmů a nástrojů, které tvoří teoretický fundament pro variační formulaci okrajových a počátečních úloh a pro metody jejich přibližného řešení, jako je například metoda konečných prvků nebo Ritzova metoda.
©2022-2025 K101 FSv ČVUT v Praze